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When weakly collisional plasmas have locally trapped particle populations, perturbations to the
plasma equilibrium (such as waves or static field-errors) can induce phase-space discontinuities in
the particle distribution function that strongly enhance entropy production, plasma loss, and wave
damping via superbanana transport. This paper presents a simple version of this superbanana trans-
port process, wherein a plasma is heated as it is slowly forced back and forth across a squeeze
potential (at a frequency w that is small compared with the particle bounce frequency). The squeeze
potential traps low-energy particles on either side of the squeeze, but particles with higher energy
can pass through it. Trapped and passing particles have different responses to the forcing, causing a
collisionless discontinuity in the distribution function at the separatrix between the trapped and
passing particles. Expressions for both the adiabatic and non-adiabatic distribution functions are
presented, and the heating rate caused by collisional broadening of the separatrix discontinuity is
derived. The heating rate is proportional to /v, provided that v < , where v is the collision

rate (i.e., the /v regime of superbanana theory). Published by AIP Publishing.

https://doi.org/10.1063/1.5001062

I. INTRODUCTION

Natural and laboratory plasmas often have several distinct
locally trapped particle populations, due to the occurrence of
local magnetic and/or electrostatic wells. When subjected to
perturbations such as plasma waves or field errors, such config-
urations can exhibit enhanced “superbanana” transport:' the
locally trapped particles respond to the perturbations differ-
ently from passing particles, creating discontinuities in the
collisionless particle distribution function at the separatrix (or
separatrices) between trapped and passing particles; and colli-
sional relaxation of these discontinuities causes enhanced rates
of entropy production, wave damping, and transport of par-
ticles, momentum, and heat. The term ““superbanana” refers to
the single-particle drift orbits near the separatrix energy that
are perturbed by the waves or field errors.'

In this paper, we consider an example of superbanana
transport that elucidates the basic mechanism in a simple
geometry. We consider a cylindrically symmetric nonneutral
plasma column in a strong uniform axial magnetic field, con-
fined axially by surrounding cylindrical electrodes. The mag-
netic field is strong enough that we need not consider radial
motion of the plasma at all in what follows; only axial
motions are kept in the analysis. The azimuthal rotation of
the plasma is also not important in the analysis since we
assume cylindrical symmetry throughout.

Locally trapped particles are created by the imposition
of a cylindrically symmetric squeeze potential on one cylin-
drical electrode near the axial center of the column (see
Fig. 1); the potential pushes particles away axially from the
electrode but is not large enough to cut the plasma into two.
Some particles are trapped axially on either side of the
squeeze potential, while particles with more energy can pass
through the squeeze region from one side to the other.
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To this system, a small time-dependent potential pertur-
bation is applied: the end electrode potentials are oscillated
in time at frequency o, pushing the plasma back and forth
across the squeeze barrier. For a long thin plasma column of
length L, the potential changes have the effect of changing
the location of the left and right plasma ends by dL; and oL,
respectively. In the case of chief interest here, we take oL,
= —0L, = oL (Fig. 1), which can be accomplished by vary-
ing the end confinement potentials 180° out of phase (one is
increasing as the other decreases). The overall plasma length
is unchanged in this operation, but the plasma shifts to the
right and left during the end potential oscillation. As the
plasma moves to the right, the plasma trapped to the left of
the squeeze barrier is compressed and heated, while the
plasma trapped to the right is expanded and cooled, but
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FIG. 1. Schematic of the geometry. A cylindrical plasma (top) is subjected
to a central squeeze potential. The end potentials are then varied (bottom) so
as to move the plasma to the right by 0L(¢), across the squeeze. The density
changes from this plasma motion are denoted by the plus and minus signs.
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passing particles are unaffected (to first approximation).
Consequently, there is a discontinuity in the collisionless
plasma distribution function induced by the perturbation,
located at the energy separatrix ¢, between trapped and pass-
ing particles.

This discontinuity can produce strong plasma heating
compared with other heating mechanisms. We analyze the
regime v < o < wy, where the perturbed potential oscil-
lates at a frequency @ much greater than the plasma collision
frequency v, but much less than the frequency w;, at which
particles bounce from end to end. In this regime, compres-
sions and expansions can, to lowest approximation, be
treated as adiabatic and one-dimensional, which allows sim-
ple and explicit expressions for the discontinuous velocity
distribution function. The discontinuity at the separatrix is
then collisionally broadened in energy by an amount propor-
tional to \/T¢,v/w, where ¢, is the height of the potential
barrier (see Fig. 1). This narrow region of the distribution
function oscillates out-of-phase with the rest of the distribu-
tion due to collisional relaxation, and consequently causes
heating proportional to the region width, i.e., proportional to
\/v. (For notational convenience, all temperatures and poten-
tials in this paper are expressed in energy units. For instance,
the potential ¢, is related to the electrostatic potential V
through ¢, = ¢V, where ¢ is the particle charge.)

In a bit more detail, in every period of the oscillation,
trapped particles with kinetic energy K experience a revers-
ible adiabatic change in energy *2KJL/L (where the 4 and
— signs refer to the particles trapped on the left and right
sides, respectively). But trapped particles with energies

within AW = /T ¢,v/w of the separatrix energy ¢, can col-
lisionally cross the separatrix,* become passing, and then
retrap on either side within one oscillation period, and so, the
sign of the energy change becomes random for such particles
as they cross and recross the separatrix. This leads to a diffu-

sion in particle energy scaling as wKz((SL/L)2, where
K = ¢, for particles at the separatrix. This irreversible pro-
cess causes plasma heating. If all particles participated, the
rate of temperature increase would be of order (wK?/T)

(SL/L)*, where K ~ T is the mean particle kinetic energy.
However, these boundary-layer particles with K ~ ¢, make
up only a fraction of the total particle number. For a
Maxwellian distribution, this fraction is roughly (AW/

VT o,)exp (—,/T). So, the rate of temperature increase is
o(¢?/T)(SL/L) (AW/\/ ) exp (—¢,/T), or simplify-
ing, T ~ /i (¢2/T)(OL/LY exp (/7).

Other mechanisms can also heat the plasma when the
end potentials are varied as in Fig. 1, but in the regime v
< w < wy of interest here, the superbanana transport pro-
cess dominates. For instance, wave-particle resonances can
occur, causing heating which, to lowest approximation, is v-
independent (the “plateau regime”). In this regime, the heat-
ing rate is proportional to T (w/wy)’(SL/L)*.° But this
mechanism has a negligible effect due to the low frequency
assumed for the potential oscillation, w < wy,.

Near-adiabatic heating due to bulk viscosity can also
occur. Here, the axial compression and expansion of the
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trapped particles causes the parallel and perpendicular tem-
peratures to be unequal, and entropy production results as
collisions relax the temperature difference. However, this
mechanism causes heating of order #T(3L/L)* in the regime
where v < ®,” which scales with collisionality as the first
power of v. It is therefore approximately \/v/w smaller than
superbanana heating that scales as /v.

Collisional drag between different species of charged
particles in the plasma can also produce frictional heating
proportional to v in the regime @ > v.*? Here, the species
react differently to the time-varying potential due to their
different masses, and collisions dissipate the velocity differ-
ences, producing heating that scales as ym(wéL)z. This is
small compared with bulk-viscous heating when o < w.
This is the Drude model for resistive dissipation, P = I’R,
where current / is proportional to wdL and resistance R is
proportional to v.

On the other hand, if @ < v, bulk viscous heating (or
collisional drag heating) can dominate. For example, slowly
oscillating plasma ends with < v will cause bulk viscosity
plasma heating proportional to T(wdL /L)2 / .57 This type of
heating has the expected form P = I’R, where now the resis-
tance R is proportional to 1/v. Resistance R scales with colli-
sionality in this way because as v increases, collisions keep
the system closer to thermal equilibrium, so there is less dis-
sipation. This is similar to the damping of sound waves in
molecular gases, which also scales as 1/v in the regime
w < u,m due in part to molecular attenuation (bulk viscos-
ity)!" that manifests as a lag in the equipartition between
internal energy states and translational energy.

Collisional drag heating in the regime @ < v has similar
scaling. Here, frictional drag between species causes heating
that also scales as 1/v because the species “collisionally-
lock™: the drag force couples the motion of each species, so
they have nearly the same response to the potential
oscillation.”

However, in the regime v < o, the intuition that fol-
lows from P = I’R fails because the collisions are so weak
that near-discontinuities (boundary-layers) develop in the
distribution function, and relaxation of these boundary layers
dominates the heating. Consequently, scaling of the heating
with v and o is quite different in this weak collisionality
regime.

Heating proportional to /v, caused by a collisional
boundary layer at the separatrix between trapped and passing
particles, is a simple example of superbanana transport in the
so-called /v regime.'~ This regime is of importance in the
neoclassical transport expected for weakly collisional fusion
plasmas in devices such as stellarators or “bumpy tori.”

The geometry of the heating mechanism considered here
is sufficiently straightforward that expressions for plasma
heating can be evaluated and compared directly with experi-
ments. Such experimental comparisons will be considered in
a separate paper.'? Here, we lay out the theory. This geome-
try has been considered previously in studies of superbanana
transport that involves the damping of low-frequency drift
waves (trapped particle diocotron modes)'*™"> and cross-
magnetic field particle transport.*>'®' In those cases,
cross-magnetic field drifts and plasma rotation were



112120-3 Daniel H. E. Dubin
necessary ingredients in the theory. Here, these effects can
be ignored, further simplifying the analysis.

Nevertheless, the self-consistent plasma response to
sloshing through a squeeze potential is non-trivial even in
this simple geometry. As trapped particles are compressed or
expanded, the passing particles stream along the magnetic
field in order to shield out the resulting potential changes.
These potential changes couple the plasma response at dif-
ferent radii. For instance, at larger radii within the plasma,
most particles are trapped by the squeeze potential, and so, a
slosh to the right as shown in Fig. 1 increases the density to
the left of the squeeze and decreases it to the right. However,
at smaller radii, geometric effects and plasma screening
reduce the squeeze potential, and here, passing particles
dominate the plasma response. These particles stream to the
right end of the plasma column in order to shield out the den-
sity changes caused by the trapped particles at larger radii.

In Sec. I, we consider the collisionless adiabatic response
to slow variations in the external potential, including self-
consistent plasma effects. In Sec. III, we determine the effect
of weak collisions on the distribution function and evaluate
the heating. In Sec. IV, we discuss the results and consider
some outstanding questions. In Appendix A, we consider a
numerical method for solution to the self-consistent problem.
In Appendix B, we consider the lowest-order collisionless
nonadiabatic effects on the distribution function.

Il. COLLISIONLESS DISTRIBUTION FUNCTIONS
UNDERGOING ADIABATIC VARIATIONS

This section describes adiabatic invariant theory for the
collisionless evolution of a distribution function under slow
time-variation of external potentials. For charged particles
of mass m moving in a uniform magnetic field BZ and a
time-dependent potential ¢(r,z,¢), the particle energy E
=1mv? + ¢(r,z,1) is not a constant of the motion. However,
there are approximately conserved (adiabatic) invariants of
the motion. The perpendicular energy E| = jm(v: + vf) is
one such invariant (the “cyclotron invariant”) as is the radial
position r of the guiding center. Since r and E | are adiabatic
invariants, for notational convenience, we will suppress any
dependences on these variables in the following analysis, for
example, writing ¢ = ¢(z,1).

The axial (z) motion of a particle is also constrained by
the parallel adiabatic invariant J, which is the area enclosed
by the orbit in the phase space of the axial motion, holding ¢
fixed in the potential

J(E.,t) = %pzdz

= 2J\/2m[E_, — ¢(z,1)]dz, (1)

Z1

where the axial energy E. =F —E,, and z; and z, are
turning-points of the axial motion, found from the roots of
the equation ¢(z,1) = E..

Consider particle motion starting in an initial potential
¢(z) that slowly evolves in time toward a final potential
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¢'(z) = ¢(2) + 6¢(z). Under this evolution, the axial energy
E. changes to E’ and the adiabatic invariant evolves in func-
tional form from J(E.) to J'(E’) where

)

J(E) = 2J VI — $()Jdz, @)

T(E) =2

/
1

2m(E. — ¢'(z)]dz. 3)

z

In Eq. (3), the primes on the turning points indicate that they

have moved due to the change in energy and potential.
According to the theory of adiabatic invariance, the

value of the invariant is unchanged under this evolution

J(E)) = J(E.); @)

in other words, the phase-space area of the initial orbit is the
same as that of the final orbit. This equation, together with
Egs. (2) and (3), allows one to determine the final energy E!
in terms of the initial energy E..

An explicit formula for the energy change can be found
when the change in potential d¢(z) is small. Defining J0E.
=E, — E. and Taylor expanding Eq. (3) to first order in
small O0F, and d¢ yield

S "

J(E) = ZmJVZ(E_,, z)dz + 2J5E‘/Z7(_T75d;§z)dz, (5)
where
VAE: z) = V2(E: — ¢(2))/m (6)

is the particle speed as a function of position, for given
energy E.. Note that, although V,(E., z) approaches zero at
the end points of the integration, this Taylor expansion to
first order is still allowed because the integral in the second
line is integrable (provided E. # ¢,, the separatrix energy).
In the second integral, z; and z, can be replaced by z; and
7,, respectively, because the difference between the primed
and unprimed turning points is small, and the integral is
already small. In the first integral, one can make the same
replacements because the integrand vanishes at z=z; and
z =1z,, so that small variations in the turning points produce
changes in the integral value only at the second order in
their variation. Therefore, to the first order in d¢, the first
integral equals J(E.) [see Eq. (2)], and Eq. (5) can then be
expressed as

J(E)) = J(E.) +2 J

OE, — 0¢(z)
—dz. 7
VAE.z) @

However, according to Eq. (4), the adiabatic invariant is
unchanged, so the integral in Eq. (7) must equal zero.
Rearranging terms then implies that the energy change dur-
ing the evolution is given by
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2 80
OE, = (6¢) = ;dez’ (8)

7]

where () is the “bounce-average” operation, a time-average
along the orbit, 7 is the orbit period

T dz
(e =2 ViED) ©

and (0¢)(E;) is the bounce-averaged change in the potential,
averaged over a particle orbit of energy E..

Equation (8) can also be obtained directly from the
Hamiltonian equations of motion of a particle in a time-
varying potential. These equations imply that the time rate of
change of the particle’s energy is determined by the explicit
time-variation in the potential according to

ddit = %—? (10)
Integrating both sides from the initial to final time yields
I
OE, = Jdt(&p(z, 1)/00)]—p)- (11)

ti

Noting that z(7) oscillates rapidly as particles bounce between
turning points allows one to replace the integrand by its
bounce average, yielding J0FE, = ftff dtd{¢)/0t. Performing
the time integral then returns us to Eq. (8).

A. Adiabatic change in the particle distribution
function

We now turn to a description of the collisionless evolu-
tion of a distribution of particles as the potential slowly varies
in time. Consider a band of particles in phase space moving
in the initial potential ¢(z), and uniformly distributed
between action values J and J - dJ. The distribution function
for this band of particles is the phase space density f, i.e., fdJ
is the number of particles in the band. Now, as the potential
evolves to ¢'(z), the band of particles evolves to a new band,
but the area of the band is unchanged since this area is an adi-
abatic invariant. Since the number of particles is also
unchanged, the final phase space density in the band, f’, must
equal the initial density f. If one considers the distribution to
be a function of energy, this result can be expressed as

f(E) =f(E.), (12)

which accounts for the fact that the energy of the particles
changes from E, to E! during the evolution.

When the potential changes by only a small amount d¢,
an explicit expression for the change in the distribution func-
tion can be obtained. We first express Eq. (12) as

f(EL) =f(E. - OE.), (13)

then Taylor expand, and apply Eq. (8) to obtain
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FUE) = f(E.) — (6¢)0f | OE.. (14)

The new distribution can be written explicitly in terms of
coordinates and velocities since E.(z,v.) =imv? + ¢'(2)

and ¢' = ¢ + 5¢

f'(z,v:) = f(Ex(z,v:) + 6¢(2)) — (66)0f /OE,
=f(E(z,v2)) + [0¢(2) — (6¢)|0f /OE,  (15)

where, in the second line, the distribution is Taylor expanded
and the prime on the partial derivative with respect to energy
is dropped because the difference is second order in the vari-
ation. Thus, at a fixed phase space coordinate (z,v,), the adi-
abatic first-order change Jf in the distribution function is

o (z,v:) = [0¢(2) — (66)0f / OF... (16)

When the initial distribution function f is a Maxwellian at
temperature 7, Eq. (16) simplifies to

5¢(2)T— <5¢>f. 17

of (z,v,) = —
The term —d¢ gives the Boltzmann response to a potential
perturbation (modulo, an additive constant required to con-
serve particles on a field line), the expected response once
collisions relax the plasma to a local thermal equilibrium
state. The term (0¢) is required in the collisionless plasma
response to the potential in order that the number of particles
on every energy surface is conserved in the adiabatic pro-
cess, as required in Vlasov dynamics. Conservation of parti-
cle number on every energy surface can be proven by taking
the bounce-average of the right hand side of Eq. (17), which
averages over the energy surface chosen for the bounce-
average

((0¢(2) = (99))f) = ((0) — (04))f =0.  (18)

B. Phase-space discontinuities from a squeeze
potential

When the equilibrium potential ¢(z) has an applied
“squeeze” (i.e., a local potential maximum within the
plasma, separating two regions of trapped particles on each
side of the maximum), the adiabatic first-order change in the
particle distribution 0f(z,v.) will exhibit discontinuities.
(We are again suppressing radial dependences for notational
convenience.) These discontinuities are caused by the differ-
ence in the response of trapped and passing particles to the
change in the potential, d¢(z).

As a simple example, consider particles confined by
reflecting walls at locations z=0 and z=L. A squeeze
potential of height ¢, is applied at z=L; and is assumed to
be very narrow in z so that it produces specular reflection of
trapped particles with kinetic energies less than ¢, but has
no effect on passing particles with kinetic energies larger
than ¢,. This plasma model approximates the situation in
experiments for which the Debye length is very small com-
pared with the plasma length, causing applied potentials to
be z-independent within the plasma, except in Debye sheaths
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at the squeeze and at the plasma ends. Particle reflection off
of the rapidly varying potential in the Debye sheath then
approximates the effect of a reflecting wall.

Now consider the effect of the small potential perturba-
tion that occurs when the end walls at z=0 and z=L are
slowly moved to z=0L; and z =L — dL,, respectively
(note the minus sign in the second case). Let us first neglect
the effect of self-generated potentials. For trapped particles
to the left of the squeeze, the particle density and energy
increase since the region they are trapped in decreases in
length by JL;, and to the right of the squeeze, the density
and energy of trapped particles increase by a different
amount as that region compresses by 0L,, and for passing
particles, the density and energy increase by different
amounts, as the plasma compresses by OL; + 0L,. For
instance, if 0L, = —dJL; (the case of interest in our experi-
ments), the passing particles’ energy is unchanged (in adia-
batic theory).

In more detail, the energy change for trapped particles
to the left due to the 1D adiabatic compression is OE,
= mv?6L /Ly, and to the right, 6E, = mv28L,/L, where
L, =L—L;, and for passing particles OF, = mvf(éLl
+0L,)/L. Then according to Eq. (13) (after Taylor-
expanding, and assuming that f is a Maxwellian), the trapped
particle distribution function to the left and the right of the
squeeze is

2
nﬂ}lef, v <2¢/m & z <L,
of = ! 19)

25L
V02 W2 <2 /m & z> L
TL2 -

<

for trapped particles to the left (right) of the squeeze, while
for passing particles

mV?(éLl + 5L2)

f =—————/,

I vi> 20 /m. (20)

Thus, a discontinuity develops in the perturbed distribution
at the separatrix between passing and trapped particles,
which is at v2 = 2¢,/m.

Equations (19) and (20) also follow from Eq. (17). For a
“reflecting wall” with potential ¢(z) that is zero away from
z =0, that rises rapidly at z =0 so as to cause reflections, and
that moves in z by 0Ly, the perturbed potential is of the form
0 = ¢(z— 0Ly) — ¢(z). Taylor expansion then implies
0¢p = —0L10¢/0z. This implies that 6¢p = 0 away from the
wall at z=0, but (d¢) # 0. For particles trapped to the left
of the squeeze, i.e., between a moving wall at z=0 and the
squeeze at z =L, the bounce-averaged potential is

Ly L,
60) =2 |00 = - [
_ 2me‘ sz%Vz(Ez,z) = 251_L1 (\/MT - 0)
= mvf(SLl}Ll, 21
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where we used Eq. (6) in the second line, and T = 2L, /|v,|
for left-trapped particles. Similar arguments can be used to
obtain the bounce-averaged perturbed potential in the right-
trapped and passing regions.

Note that the Taylor expansion of ¢(z — 0L;) used to
derive Eq. (21) requires that 6L, be small compared with the
minimum scale length of variation of ¢(z), which we define as
A. (In experiments,12 A is of order the Debye length.) For a rap-
idly varying “reflecting wall” potential with A < Ly, the condi-
tion 0Ly < A is a stringent requirement on OL;. This
requirement is a limitation of the linearization approach used to
derive Eq. (17). Nevertheless, this equation allows us to obtain
the perturbed distribution function everywhere in the plasma to
linear order in JL;, including at the plasma ends where ¢(z)
varies on the scale of 4. On the other hand, Egs. (19) and (20)
were derived assuming that 6L; < Ly, a less stringent require-
ment on dL;. However, Egs. (19) and (20) do not hold through-
out the plasma. They are incorrect in the Debye sheaths at the
plasma ends where ¢ (z) is varying rapidly: they do not display
the density changes in the ends depicted by +/— symbols in
Fig. 1, while Eq. (17) does so through the term d¢(z), which is
not included in Eq. (19) or (20).

It is interesting that both approaches to the above
“reflecting wall” problem give the same result for Jf away
from the ends of the plasma, suggesting that Eq. (17) may be
useful in the central region of the plasma, away from the
ends, even for end motions that are larger than A. This is a
hopeful sign for the linear theory, since it might still apply to
experiments now being conducted'? that typically operate
with 0L > 4.

However, the perturbed distribution function is modified
by the self-consistent plasma potential, which is not included
in Eq. (19) or (20). The density changes associated with the
compressions/expansions produce a self-consistent potential
change d¢,,. This self-consistent potential change is often of
the same order of magnitude as the external potential change,
and therefore must be taken into account.

For a long plasma column, the potential change on
the left side is independent of z away from the ends and the
squeeze, i.e., for 0 < z < L; (due to Debye-shielding). The
potential then changes sign in the squeeze region and again
becomes independent of z on the right side in the range
L, < z < L. This implies that, for trapped particles, the self-
consistent potential change satisfies (d¢,) = d¢,, and so,
according to Eq. (17), the trapped particle distribution is
unaffected by the self-consistent plasma potential.

However, for passing particles, (d¢,) # ¢, and so
Egs. (17) and (20) imply

5f — mvzz(éLTlLJr dL,) . (69, —T<5¢p>) ;.

v > 2¢,/m.
(22)

The self-consistent potential can then be found using
Poisson’s equation. Defining d¢,(r) and 0¢,,(r) as the
self-consistent potential perturbation on the left and right
sides, respectively, the Poisson equation for each side is

V3¢, = —4nq*on;, (23)
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where j=1,2, V2 = 1/r(0/9r)r(0/0r), and where dn; is the
density perturbation on side j, given by the velocity integral of
the perturbed distribution functions, Egs. (19) and (22)

V 2¢/m 5 00
5Lj sz e mv /2T m2jar
onj=2—n dv,—= —2n dv,e ™"
Lj 0 T ZTIT/m

\/2¢s/m
y 00, — (06,) — mv*(SLy + oLy) /L

T\/27T /m

The first integral in Eq. (24) is the contribution Jn; 7 to the
perturbed density from trapped particles, and the second is
the contribution from passing particles, én; p. These integrals
can each be performed analytically

(24)

5Wf::”jf(m~—Aﬂ%
SLy + SL,

L

5¢p,f - <5¢p>

(np +An) —n T

onjp=n np, (25)

where 5y = erf (\/dbs/T) is the equilibrium fraction of

trapped particles, np =1 —ny = erfc(«/qﬁs / T) is the equi-

. . . . . o ¢.v _ T
librium fraction of passing particles, and An = 24/ e s/

is the change in these fractions caused by particles going
from trapped to passing and passing to trapped as the plasma
length varies.

For the passing particles, the term proportional to
0¢,; — (0¢,) describes the density change due to Debye-
shielding. The #5p factor arises because only passing particles
can move from end to end to Debye-shield the potential cre-
ated by the trapped particles. The term proportional to 0L,
+0L; is the density change of the passing particles due to the
overall change in plasma length. Here, the factor Ay arises
from particles that go from trapped to passing during the adi-
abatic energy increase caused by the length change (when
0Ly + 6L, > 0, the plasma length decreases). For the trapped
particles, the equilibrium fraction #7 is also modified by Ay
because some particles become untrapped during compres-
sion. These particles either become passing or are retrapped
on the other side. For example, if 6L, = —dL;, all particles
that become untrapped on the left side are retrapped on the
right side; none become passing.

Equations (23) and (25) can be simplified by noting that,
for the passing particles, the bounce averaged potential in
Eq. (25) is (6¢,) = (L1606, + L20¢,,)/L. Acting on this
expression with V%, neglecting radial variation in L,/L and
L,/L (for simplicity), and using Egs. (23) and (25) yield

oLy + dL,

V,2.<5¢p> = —4ng*n 7

(26)
Thus, the bounce-averaged potential change is only due to
the overall change in the plasma length. In particular, if
0L, = —0Ly, the length does not change and there is no
change in the bounce-averaged potential.

The solution of Eq. (26) can then be used for (d¢,) in
Eq. (25). This allows solution of Eq. (23) on each side
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separately. The equation is most easily expressed in terms of
the scaled potential difference ;(r), defined by the expres-

sion 0¢p,; — (d¢,) = ;T

B 4ng*n

AL;:
VI = e = Onp = A |, @)

L
where the scaled length change on each side j, AL;, is given

by

OLLy — 0L

AL; I

; (28)
with j# k. For instance, if OL; = —dL, = 0L, then
AL; = 6L;. The first term in the square bracket of Eq. (27) is
the Debye-shielding density change due to passing particles,
and the second term is the density change due to trapped par-
ticles, which acts as an inhomogeneous term in the differen-
tial equation.

Equations (26) and (27) can be solved numerically (e.g.,
via the shooting method) for the radial dependence of the per-
turbed potential on each side of the squeeze. These equations
are useful for a long thin plasma column with a short (in z)
applied squeeze potential. In Sec. IIC we consider general
expressions for the self-consistent potential change, applica-
ble to realistic plasmas with an applied squeeze.

C. Self-consistent effects

In this section, we derive a general expression for the
change in the self-consistent potential from an external
potential that changes adiabatically. The total potential
change d¢ can be broken into a portion d¢,,, produced exter-
nally by variation of voltages on external electrodes, and a
portion d¢), produced by the plasma response to the external
potential variation: 6¢p = 6¢,,, + d¢,,. The external potential
is a solution of Laplace’s equation, V23¢,,, = 0, depending
only on boundary conditions given by the voltage change on
the electrodes. In contrast, the plasma potential satisfies
Poisson’s equation

V25¢p = —4ng® Jdvzéf(r, Z,V;), (29)

with boundary conditions that d¢, =0 on the surrounding
electrodes. Since Jf depends implicitly on d¢),, this self-
consistent equation for d¢, is harder to solve. Nevertheless,
0¢,, cannot simply be neglected because it is often of the
same magnitude as ¢,

Assuming that the initial distribution function f is of
Boltzmann form in z and v,, i.e., f = N(r)exp|[—E./T],
where N(r) is any function of r, the perturbed distribution
function Jf is given by Eq. (17) which leads to

—mv? /2T

<5¢I,+5¢m—Jdvz\e/ﬁ<5¢p+é¢m>> ;

Ang*n
V3, =
(30)

where n(r,z) = N(r)e ?"9)/T /21T /m is the initial plasma
number density. For a given external potential perturbation
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0¢,(r,z), Eq. (30) is an inhomogeneous linear integro-
differential equation for the perturbed plasma potential
0¢,(r,z). The equation is nonlocal in z due to the appearance
of the bounce-average operator (). The nonlocality can be
seen explicitly by substituting the form of the bounce-
average operator into Eq. (30) [see Eq. (8)]

4nq2n e—mvf/ZT
V2o, =——| ¢, (r,z)+9 (752 —Jd\’27
P Bp(r2) + (1) = | v~
2 Zz(EZ,r) d,
4
><‘E(Ez,r) J V.(E..Z) [5¢p(”,2,)—|—5¢ext(r,zl)] ,
zl(E;,r)

3D

where, in the velocity integrations, we must remember that
energy E. depends on v, as E, = mv?/2 + ¢(r, z).

D. Self-consistent evaluation of the perturbed
adiabatic plasma potential

In this section, we describe the numerical results that
solve Eq. (31) for the self-consistent perturbed potential in
realistic geometry. In current experiments, this full solution
is required because the plasma is not sufficiently long and
the squeeze region is not sufficiently narrow to make Eq.
(27) a good approximation. The method employed in the
solution is discussed in Appendix A. The method solves the
integro-differential equation (31) on a radial and axial grid
for a given plasma equilibrium and a given perturbed exter-
nal potential due to voltage changes applied to the cylindri-
cal end electrodes.

In Fig. 2(a), the contour plot of the equilibrium density
n(r, z) is displayed for a typical nonneutral plasma with a
temperature of 7 = 0.45eV, computed using standard tech-
niques®” in a cylindrical Penning-Malmberg trap geometry.
Here, Ly = 23.24 cm is the length scale of the computation

0.04+-
0.02+-

:? 0.00
-0.02+

-0.04+-

00 02 04 06 08 10
z/ Lo

FIG. 2. Equilibrium density contours (in units of 10°cm?) in a T = 0.45eV
plasma to which a 15eV squeeze potential is applied to a cylindrical elec-
trode just to the right of the plasma center. Here, Ly = 23.24 cm, and the
electrode radius is 2.86 cm.
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volume, and the density is measured in units of 10°cm3. The
plasma is confined axially by 100eV potentials applied to
cylindrical electrodes at each end, and a squeeze potential of
15eV is applied to a cylindrical electrode that runs from
z=0.5Ly to z = 0.65Ly. The cylindrical electrode radii are
2.86cm, and the plasma radius is roughly 0.7 cm, although
this varies with z considerably due to the applied squeeze
potential.

In Fig. 3(a), contour plot of the perturbed density
on(r,z) is displayed, computed by solving Eq. (31) using the
numerical method described in Appendix A, using 401 axial
grid points and 128 radial grid points. (It may be useful to
compare this with the schematic in Fig. 1.) This is the colli-
sionless adiabatic density response to a change in the left and
right electrode potentials of +dV and —dV, respectively,
where 0V = 10eV (i.e., 10% changes in the 100eV end
potentials). The plasma moves to the right due to this wall
voltage change, implying a relatively large positive density
change on the right plasma end and a negative density
change at the left end. Away from the ends, and at larger
radii near the radial plasma edge, most particles are trapped
by the squeeze potential, and so the plasma density increases
on the left side and decreases on the right side as the trapped
particles are compressed on the left and expanded on the
right. However, at smaller radii, most particles are able pass
through because the Debye-shielded squeeze potential is
considerably smaller, and here, the plasma density response
changes sign as these passing particles Debye-shield the
trapped particle response at larger radii. This behavior has
been shown schematically in Fig. 1 by the + and —signs.

Figure 4 displays the bounce-averaged perturbed poten-
tial (6¢)(E., r) computed at radius /Ly = 0.63 cm/23.24 cm
= (0.027 for a particle with energy E., plotted as a function
of E.. This potential is positive for particles trapped on the
left side of the squeeze potential, where the plasma has been
compressed by the applied electrode potential change 6V. On
the right side, the plasma response is opposite in sign for the
trapped particles. On each side, Debye-shielding arising from
the plasma potential §¢, reduces the size of (5¢) by about

0.05
0.04 15005
— 004
003 Z 003
0.02
<
N 001
002
0
~001
001 oo
<-0.025
000"

0.0

FIG. 3. Adiabatic density response divided by the central density,
on(r,z)/n(r =0,z = Ly/2), due to an end potential perturbation of +10eV
on the left and —10eV on the right.
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FIG. 4. Solid lines: Bounce-averaged perturbed potential (¢p) for a particle
with energy E., plotted versus E., at radius r = 0.63cm (r/Lo = 0.027).
Dashed lines: Bounce-averaged external potential (d¢,,,). The potentials are
scaled to the applied end potential perturbation oV.

a factor of 2 compared with the bounce-averaged external
potential perturbation (d¢,,,) (the dashed lines). For the pass-
ing particles, which average over the potential on the left
and right sides, the bounce-average of the perturbed potential
is almost zero. The minimum energies plotted, roughly
27T = 12¢eV, arise from the minimum values of the equilib-
rium plasma potential at this radius (with a slightly different
minimum value on the left and right sides). The plot shows
that particles with kinetic energies up to about 37 = 1.4eV
are trapped at this fairly large radius; in other words, almost
all particles are trapped.

Figure 5 displays the bounce-averaged perturbed poten-
tials plotted versus energy at a series of radii. The plot shows
that at all radii (0¢p) ~ O for passing particles, (6¢) > 0 for
left-trapped particles (when 6V > 0), and (d¢) < O for right-
trapped particles. At radii near r =0, the range of energies
over which particles are trapped is small, roughly 0.37, cen-
tered at the plasma potential E, ~ 35T. However, at larger
radii, the range of energies over which particles are trapped
increases because the height ¢, of the squeeze potential bar-
rier increases with increasing radius. Thus, the fraction of
trapped particles 77 is an increasing function of radius. One
can also see that the minimum potential energy for a particle
at a given radius decreases with increasing radius, from

-0.01 22

~1-0.02

40

35
30
25 EJT

FIG. 5. Bounce-averaged perturbed potential versus energy E, at several
radii within the plasma.
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FIG. 6. Contour plot in axial position and velocity of 6fT/(fdV), where of
is the perturbed adiabatic distribution function [Eq. (17)] at radius
r = 0.63cm, fis the equilibrium distribution function at that radius, and
oV is the perturbed end potential. Velocities are scaled to v, = /T /m, the
thermal speed, and positions to Ly = 23.24cm. The dashed curve is the
zero contour. Note the discontinuity at the separatrix energy given by
the solid black curve.

about 35T at r=0 to about 22T at the plasma edge, due to
the fall-off with radius in the self-consistent equilibrium
plasma potential.

The discontinuity in the bounce-averaged perturbed
potential (0¢) produces a discontinuity in the perturbed dis-
tribution function of [see Eq. (17)]. In Fig. 6, the perturbed
distribution function at radius r = 0.63 cm is plotted versus z
and v.. The distribution is divided by the equilibrium distribu-
tion f in order to emphasize large velocities where the discon-
tinuity is more noticeable. The separatrix at energy E, = ¢,
forms a “figure eight” curve and the discontinuity in Jf along
this curve is apparent as an abrupt shift in the contours. In
Fig. 7, the perturbed distribution is displayed versus velocity
at two values of z and at the same radius as in Fig. 6. At
z/Lo = 0.35, a location chosen well away from the plasma
ends, and from the squeeze, the distribution is close to that
given by the simplified model of Egs. (19) and (22): of/f
is roughly quadratic in v, for trapped particles and nearly
constant in v, for passing particles (when 0L, = —dJL).
However, at z/Ly = 0.5, nearer the squeeze region, the per-
turbed distribution function deviates significantly from the
simplified model.

0.004F hae R
I, ~——lo—-- \
h 1
— 1 I
1
2 0000 - +
2 i ! 2/Lo=035
1
= —0.002 1 : 1 ===-z/Ly=05
N [ I
—0.004}

Ve/ve

FIG. 7. Plots of ofT/(féV) versus velocity at two axial positions, at radius
r=0.63cm.
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lll. COLLISIONS AND HEATING

In this section, we consider the effect of interparticle
collisions on the perturbed velocity distribution, focusing
on the effect of collisions on the discontinuity in the distri-
bution function at the separatrix between trapped and pass-
ing particles. In the /v regime where v < w < wp,
collisions smooth out this discontinuity, producing a nar-
row collisional boundary layer at the separatrix, where par-
ticles are able to randomly detrap and retrap, causing
entropy production and heating. The width of this bound-
ary layer scales with collisionality as /v, and so does the
heating rate.

When collisions are added to the equations of motion,
we assume that the perturbed distribution function Jf evolves
according to a Fokker-Planck equation

oof | 0of [ 10¢0of 100¢ of
ot 9z mdzdv. m Oz Ov.
T 0 Adf  mv,
T mo. (8v- 5f) (32)

The simple collision operator used here is sufficient to
describe the collisional boundary layer in the /v regime.
The collision frequency v can be regarded as a function of
particle energy and position.

To describe the effect of collisions, we break Jf into two
pieces

of =f(—0¢+g)/T. (33)

The first term —f0¢ /T represents the linearized Boltzmann
response to the perturbed potential, and the second term fg/T
is a correction to this response. Applying Eq. (33) to (32),
we find that the function g satisfies

0g dg 10¢ 0g <5‘ Og muv2%>+@

o TV o Tmazov. m\ov.lov. T ov.)  or
(34)

This equation can be solved in the passing and trapped
regions and the result patched together at the separatrix so as
to produce a continuous solution for g whose first derivative
is also continuous. This has been done previously for a spe-
cial case, as in Ref. 21. Here, we note that the largest colli-
sional effect is the smoothing of the discontinuity in the
energy of the bounce-averaged (adiabatic) distribution func-
tion, and so we consider only the bounce averaged portion of
this equation, which dominates the plasma response in the
regime of interest, ¥ < o <K wy.

We first replace g(z,v.,f) by its bounce average
(g)(E.,1). We then bounce-integrate the equation, acting on
both sides with §dz/v., where the integral is along a colli-
sionless orbit for which energy E, is fixed. The integral of
the collision operator is simplified by noting that
0/0v,|, = .|,. We also keep only the second-
derivative term in the collision operator since this dominates
in the boundary layer where the solution for (g) varies rap-
idly with E.. The result is
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a(g) _ 0*(g) _0(0¢)
o T g T
where (v) = §dzmv.v/J is the bounce-averaged collision
rate. Dividing by 7, we arrive at
9(g) 2 () | 0(o¢)

o =V o T (36)

(35)

where vg is the energy diffusion rate, given by vg = (v)J /1T.
Similar bounce-averaged energy diffusion equations for the
distribution function have been derived previously in associa-
tion with cross-field transport and diocotron-mode damp-
ing.*'> This particular form is somewhat simpler because it
does not require azimuthal plasma motion. It is also more gen-
eral in that it is correct for arbitrary squeeze potentials; the pre-
vious derivations assumed a long thin plasma and a narrow
squeeze region.

In Eq. (36), (0¢) changes discontinuously at the energy
separatrix (see Fig. 4), taking values (5¢><P> in the passing
region E, > ¢, and (5¢><L'R in the left and right trapped
regions respectively, where E, < ¢,. However, near the sep-
aratrix, within the collisional boundary layer on each side of
the separatrix, we can treat these bounce-averaged functions
as constants, independent of energy since the boundary layer
is narrow; also, vg can be treated as constant in the boundary
layer, but taking different values l/g) in the different regions
(because (v), J and t differ in each region). Then, assuming
time- dependence of the form (g) = Re(g)" e~ and (5¢)
= Re(éd)) ~i! in each region j, the general solution of Eq.
36) is

() = AV E—0)/T | )= (E=d)/T L (5¢)0) (37)

where o) = (1 — z)\/w/2yE ,and AY) and BY) are undeter-

mined coefficients. We take B = B®) = A®) =0 so that
the solutions in the trapped and passing regions do not blow
up. With these choices, the solutions match the collisionless
solution <5¢) in each region for energies far from the sepa-
ratrix energy ¢,. The values of the remaining undetermined
coefficients are connected by the condition that the distribu-
tion be continuous across the separatrix, which implies

(8 — <5¢>><“>> AEZGIT 4 (5L,

)" = (g = (08) e ETIT 1 (59) 7, (39)
where g, is the value of (g) V) on the separatrix. Finally, g,
can be determined from the condition that the total number

of particles at each radius is unchanged by the perturbation:
0N = [ dzdvdf = 0. Converting variables to (y,J), taking

of =f(=od+()/T (39)

and noting that [dyd¢p = 2n(d¢) and that dJ = dEt, after
integrating over the exponential boundary layer in each
region, we obtain

A

(g) " =

(g

ON =0=

(
+ 5 (8= OO + 5 (5= (60)) [, @0)
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where f; is the equilibrium distribution at the separatrix
energy, r? is the bounce period in each region near the sepa-
ratrix energy, and the subscript s on bounce averages indi-
cates that they too are evaluated near the separatrix energy.
Solving for g, then yields

g =" , (41)

J
where we have used ol) = (l—l)\/w/2ug) and g

= (v)J/1T.

Before proceeding, note that bounce averages are often
singular at the separatrix energy, since the period 7
approaches infinity there. However, these singularities are
exponentially narrow for typical potential profiles, and we
assume that this width is small compared with the width in
energy of the collisional boundary layer, of order \/T¢,v/w.
In this case, the singularities are washed out by collisional
diffusion, so quantities in the above expressions that are
evaluated at the separatrix are actually averaged over the
narrow boundary layer, and are therefore not singular.

In Fig. 8, we plot Re(g >U> and Im(g )U) in the passing,
right-trapped, and left-trapped regions, evaluated at radlus
r =0.63cm using Eq. (38), and assuming that w/2uE =
100 (the dashed lines). Far from the separatrix, (g) = (d¢),
but at the separatrix, the discontinuity in the collisionless dis-
tribution function is smoothed out over the collisional
boundary layer. The imaginary part is nonzero only in this
layer and is of the correct sign so as to cause heating (the
phase of the distribution lags that of the external potential,
indicating drag on the distribution due to collisions).

A. Joule heating

The mean Joule heating per oscillation period of the
forcing is given by the general expression

oos| g1 s
i A s
Im<g>(nght) i Re<g>(passmg)
2 0.000] - mmmmmmmmmcommaad
N — i
30 Im(g)“eﬁ) h
-0.005+ :
Re<g>(right) 1
-0.010+ J
27 28 29 30 31 32 33
E/T

FIG. 8. Dashed and dotted lines are the functions Re(g)?, and Im(g)?,
respectively, the real and imaginary parts of the bounce-averaged distribu-
tion function in the collisional boundary-layer analysis [see Eq. (39)], scaled
by 0V and evaluated at radius r = 0.63 cm, and plotted versus energy E..
Solid lines are the bounce-averaged perturbed potential (d¢) in collisionless
theory (same as Fig. 4). The real part of (g) is in phase with the external
potential and approaches (d¢) away from the separatrix. The imaginary
part, concentrated in the boundary layer, is 90° out of phase and is therefore
responsible for heating the plasma.
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dK /dt = — Jd3rn(r 2)0U,(r,2,0)08¢/0z,  (42)

2n/w
J odt
2n
0
where 0U. is the perturbed fluid velocity. In order to express
the integrand in terms of the perturbed density rather than
the perturbed fluid velocity, we apply an integration by parts
that converts the integrand to

2n/w
B wdt [ 5 ., 0n(r,z)oU.(r,z,t)
dK Jdt = J = Jd 5ep o
0
21/
_ J “2’“” Jd315¢(r 2,000n(r,2,0)/01,  (43)
T
0

where, in the second line, we applied the linearized continu-
ity equation 90n/0t = —9(noU.)/dz. This form of the
Joule-heating expression can be evaluated using the per-
turbed distribution function via Eq. (33) (where again we
consider only the bounce-averaged contribution to g)

dK/dt = —

2n/w
J wdt
2nT
0

Jd3rdv op(r,z,0)f (r,z,v)

x [~8d(r2.0+1(8)]. (44)

However, 5{{)(&2, 1) is 90° out of phase with d¢ and so
the time integral of this portion of the expression vanishes.
The result can be simplified further by noting that dzdv,
= dydJ /(2mm); that f and (g) are independent of ; and that

[ dyrop = 2nRe[(5¢)V e

21/
odt
dK /dt = — J o TszerJd/f
0 70

x Re [<5¢>U)e“‘w’} Re [fiw<g)0)e*iw’} . (45)

where the sum is over separate phase-space regions (left-
trapped, right-trapped, and passing), the subscript on the J
integral indicates an integration over the area of the given
region, and we have used (¢) = Re[—iw(g)"e "] in a
given region. Further simplification can be affected by using
the identity

2n/w
dt ; ; 1
J w—Re[ae””’]Re[—ibe”w’] = —Im[a*b), (46)
2n 2
0

which implies

@ . ()% 0

dK /dt = ZmTJZRIdrImZJd]f(édb) (V. @7
a0

Note that the collisionless limit of Eq. (35), d(g)/ot

= 0(0¢)/0t, implies that (g) = (d¢), which recovers the
adiabatic solution for Jf given by Eq. (17). In this case,
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Eq. (47) implies that dK /dt =
order to produce heating. _

In the /v regime, we can apply Eq. (38) for (g) W to Eq.
(47)

0, so collisions are required in

—_ 2 |on HOIFFNUE
dK /di 2mTJ2mdrIij: JdEzfr (6¢)
0)

X (g5 — (9)V))eS" " BT (48)

where we converted the J integral to an energy integral via
dJ = tdE., and where S¥) =1 in the trapped regions of
phase space (j=R or L) and S¥) = —1 in the passing region
(J=P).

The integral over E, can now be performed assuming
that the boundary layer is narrow, so that energy-dependent
quantities in the integrand can be evaluated at (or near) their
values on the separatrix

w ‘ng) i) * j
dK [di = — 5~ J 2nrdrf,Im Z,: i) (00)" (g5 — (3)Y),
(49)

where the subscript s denotes quantities evaluated on (near)
the separatrix. '

According to Eq. (40), we can add to <5q§)§’)* any
Jj-independent factor without changing the result, so we
choose the factor —g7, which implies

()
B)P Is
dK /dt = J 2nrdrf,Im Z lgs — 5 G0

Finally, substituting the definition of « and taking the
imaginary part of the expression yield

Jo> 0)

YTS‘

dK [di=> - JandrfSZ I 5 e — (0P, (51)

which is manifestly positive-definite as expected for a colli-
sional heating process that must increase the entropy of the
system. We will evaluate Eq. (51) by using the collisionless
adiabatic form for (d¢) determined previously, neglecting
the small correction due to the collisional boundary layer.
This is a good approximation when v/w < 1.

Equation (51) shows that the heating rate is proportional
to v/wv (provided that v < w < wp) and is also propor-
tional to the square of the applied perturbation potential oV
since d¢ is proportional to 0V in our linear analysis. These
scalings are as expected from our estimates in the
Introduction.

The integrand in Eq. (51) can also be written in terms of
the rate of temperature change at a given radius
dK /dt = [2nrdrN.(r)(3/2)dT /dt, where N.(r) = [dzn(r,z)
is the z-integrated density. This implies that

(/ J(/ (/

dT /dt = fsz s e — (3P (52)
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This local rate of temperature increase can be measured
as a function of radius in experiments. The rate predicted by
Eq. (52) is plotted in Fig. 9 for the plasma of Figs. 2-8,
assuming that 6V = 10eV, w/2n = 500Hz, and v = 7.5s7 !,
an appropriate value for the collision frequency in a pure
Mg" ion plasma at the given temperature and central density
of Fig. 2, and one that locates the plasma well within the /v
regime with v < o < wp. The heating is peaked off-axis
because the fraction of trapped particles (the dots) is larger at
larger radii, but the heating also vanishes when the trapped
particle fraction approaches 100% and the density falls off
(see Fig. 2), because then there are few particles at the separa-
trix energy and the discontinuity in (d¢) has a little effect.
Here, the trapped particle fraction is computed as the equilib-
rium fraction of particles below the separatrix energy at a
given radius (e.g., for r = 0.63 cm, the fraction of particles
within the “figure eight” separatrix shown in Fig. 6).

In order to obtain a rough scaling of the heating rate
with experimental parameters, it can be useful to further sim-
plify Eq. (51) by considering the previously discussed case
of a long plasma running from 0 < z < L with the left and
right ends moving by oL;(r,t) and 6L,(r,t), respectively,
and with a narrow squeeze potential of height ¢, applied
at z=L,. In this case, we found the following results in
Sec. 11B: for passing particles (3¢) ") = 2¢ (6L, + dL,) /L
+(0¢,) where (0¢,) is the bounce-averaged perturbed
plasma potential given by the solution of Eq. (26); for
left-trapped particles at the separatrix energy ¢, <5¢>§L)
=2¢0L1 /Ly +6¢,,, where 6¢, , (r) is the perturbed plasma
potential on the left side far from the end and from the
squeeze [see Egs. (23)—(27)]; and for right trapped particles

00)® = 2,0Ls/Ls + 60,5 Also, \/JH T =2y /mL,

JER R = 2/mL,, and W_2fL These results

together with Eq. (41) imply that g, = <5¢> and that

dK /dt = \/novT Z errn(r)e‘d’x/TL ( AL; ¢, =+ 1//)

j=12

(53)
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FIG. 9. Computed heating rate versus radius (solid curve; left axis scale);
trapped particle fraction (dots; right axis scale).



112120-12 Daniel H. E. Dubin

where we have used f; = ne~%/"/\/2nT/m, and where
;(r) is the scaled potential change given by the solution of
Eq. (27).

When ¢,/T < 1in Eq. (27), 7, ~ 1 and the inhomoge-

neous terms can be Taylor expanded, yielding

10 o 4ng*n

ror or T

M,j47'[ 3/2
i ———(¢,/nT . 54)
¥ L3 (¢y/nT)

Thus, /; scales with the squeeze potential and length change
as (ALj/Lj)(g{)S/T)}/Z, and then, Eq. (53) shows that the heat-
ing rate scales as (bf for ¢p,/T < 1. This agrees with the esti-
mate for the heating discussed in the Introduction.

IV. DISCUSSION

In this paper, we have developed theory for superbanana
transport in the /v regime for a simple transport process:
the heating of a plasma pushed back and forth across a
squeeze potential by the variation of end confinement poten-
tials at a frequency o chosen so that v < @ < ®;. The heat-
ing is primarily due to collisional boundary-layers that build
up at the separatrix between the trapped and passing par-
ticles, caused by the differing responses of the trapped and
passing particles to the potential changes. The heating rate,
proportional to /v, and expressions for the nearly-
discontinuous particle distribution function, will be com-
pared with experiments in a separate paper.'?

Entropy production scaling as /v is a signature of
superbanana transport predicted to occur in several magnetic
confinement geometries of importance to fusion applications.
The purpose of our work is to describe the processes leading
to this type of transport, in a simple geometry that can be
probed experimentally.

In previous works on superbanana transport that caused
cross-magnetic field particle loss, it was observed that a
“ruffle” on the separatrix, i.e., a 6 asymmetry, could enhance
the transport with a loss rate scaling as 10.*>'"'® This
enhanced transport is caused by an effective broadening of
the boundary layer at the separatrix as the ruffle allows par-
ticles to chaotically trap and detrap. We believe that a similar
effect could be observed in the heating process considered
here. In future work, by applying a 0-asymmetry to the sepa-
ratrix, we will study this chaotic heating effect in both theory
and experiment.
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APPENDIX A: NUMERICAL METHOD

In this appendix, we describe a numerical method for
the evaluation of the self-consistent perturbed plasma poten-
tial ¢, (r,z) produced by an external potential change
0¢,(r,z), via solution of the integro-differential equation
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Eq. (31). The homogeneous boundary conditions are that
(3q5p =0 at the wall radius r, = 2.86cm, and that 85(;5[,62
=0 at the two axial ends of the computational volume,
Z/L() =0and Z/L() =1.

First, we will re-order the integration over v, and z’ so
that we may write Eq. (31) as

dng*n(r,z)
T

— sz’M(r,z7 7) [5¢p(r,z') + 0, (r, Z’)] ), (AD)

V25¢p - (6¢p(r7 Z) + 5¢exi(ra Z)

where the kernel function M(r, z,7') is defined as

M(r,z,7)
4m T
= dv,
V2rT (J
Vamin (1,2,2')
efmvf/ZT

X .

©(r,mv2 /2 + (r,2))\/mv2 +2¢(r,z) = 2¢(r,7)

(A2)

The minimum velocity in the integration, V., is the
minimum speed at point z required for a particle orbit to
reach point z'. This speed depends on whether z and 7' are
located on the same side or on the opposite sides of the
maximum of the squeeze potential at z = z,(r), given by
¢, (r) = ¢(r,zy). If both z and z’ are on the same side of the
maximum [i.e., sign(z—z;) = sign(z’ — z;)], then vy
= /(2/m)Max(0, ¢(r,z') — ¢(r,z)). But, if z and 2’ are on
the opposite sides of the maximum, then

Vomin = Max(\/(Z/m)Max(O, o(r,z") — ¢(r,2)),
V (2/m)Max(0, ¢,(r) — d(r,2))).

When evaluating Eq. (A1) on the grid, we approximate

(A3)

sz/M(r, 2,2 )f () ~ Az Z M(r,zi,z)f () (A4)
J

for any function f(z), where Az is the z grid spacing.
However, the form for the kernel function must be modified
for the case z; =z;. Here, the integrand in Eq. (A2) is loga-
rithmically divergent as v, — 0, and at this grid point, we
must regularize by replacing M(r,z;,z) with M(r,z)
= Az} L‘:AAZ//; dZM(r,z;,7"). Since 7' is close to z;, we can
Taylor expand the integrand in Eq. (A2), writing

J dv,

Max(0,a)

zi4+Az/2
_ 4m

M(r,z) = Az J dZ
(r,zi) z Z\/ﬁ

zi—Az/2

omi/or

S m2 )2+ $(rz)) £ 207 —2)E(r,2)

(AS)

where E(r,z) = —0¢/Jz and a = (2/m)(z; —Z)E. We

will separate out the logarithmic divergence by breaking
the velocity integral into fi/m dv. + [ dv., where

Y
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e = /|EAz/m| is a small velocity. In the first velocity inte-
gral, the Maxwellian and bounce time can be evaluated at
v.,=0 and the velocity integral can then be performed,
yielding

4
M(r,z;) =
(rz) Az\/27T /mz(r, (r,z;))
zi+Az/2
X J dz’(log [e+Ve—dl —log|a|/2)
zi—Az/2
zi+Az/2 oo
4m
+— dz'Jde
Az\2rT J
72;—Az/2 €
e—mv:/2T
t(r,mv2 2+ ¢(r,z:))/mv2 +2(2 — 2)E(r,z1)

(A6)

In both the first and second integrals, the z’ integration can
now be performed analytically, yielding

( log[\/_—i-l/\/_} \/_)
,,mzm (ViEre-hE- 62)'

(r,mv2[2+¢(r,z;))

(AT)

M(r,z;)=

\/ZnT/m‘c r(r,

\/mjdv

For a given plasma equilibrium density n(r, z) and self-
consistent equilibrium potential ¢(r,z), we solve Eq. (Al)
on a grid in r and z by first evaluating M(r,z,z") on the grid
using Eq. (A2) [or Eq. (A6) when z = Z]. This requires
determining the bounce period t(r, E,) in the given potential
¢(r,z) using Eq. (9), and then performing the required veloc-
ity integrations in Eq. (A2) [or Eq. (A6)] numerically. Note
that the bounce period has a different functional form on the
left and right sides of the squeeze (i.e., z < zy and z > zj,
respectively) and is singular at the separatrix energy where
E. = ¢(r). Evaluations of M at each grid point are required
only for points within the plasma; in the vacuum region
between the plasma and the wall at r=r,,, we can set M =0.
For a thin plasma compared with the wall radius, this fact
greatly speeds up the computation. We then formulate Eq.
(A1) as a linear matrix equation K;;0¢, = dp;, where j
counts over the r — z grid and the inhomogeneous terms dp;
are those terms in Eq. (A1) involving d¢,,,, which is a given
function determined by the voltages on the cylindrical elec-
trodes. The radial and axial derivatives are finite-differenced
using standard second-order centered differences. We solve
this matrix problem numerically using the SLATEC subrou-
tine SGEFS.

APPENDIX B: NONADIABATIC EFFECTS FOR AN
OSCILLATORY EXTERNAL POTENTIAL

Here, we consider collisionless non-adiabatic corrections
to the velocity distribution function caused by slow time oscil-
lation of the external potential d¢,,,(z) cos (wt) (we suppress
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radial dependence for notational convenience). These non-
adiabatic corrections are small when the oscillation frequency
o is small compared with the bounce frequency w,, but can
still be observed in the experiments. These corrections can be
determined by solving the Vlasov equation using action-angle
variables (/,y), where I =J/(2n). In these variables, the
perturbed distribution function then satisfies the linearized
Vlasov equation

aéf
o

wp() 2L _D0T_, B1)

where the bounce frequency w, = 27/t. For f a Maxwellian,
of /0l = —(f/T)OE. /0l = —fw,/T. The perturbed distribu-
tion function Jf and the perturbed potential ¢ are assumed
to be periodic in time with the same frequency w as the
forcing

5¢(z,1) = Redd(z)e ™,
5f‘(27 Vz, t) = ReéF(z7 \;Z)eﬂ'(ot7
where 6® and JF are complex amplitudes. Noting that  is a

periodic variable, so that 0F and d® are both periodic in ),
one may Fourier-expand these functions in

S0 = > 5¢,D)e™, (B2)
SF = Y ofu(l)e™. (B3)

Then, Eq. (B1) becomes
—iwdfy + inwpdfy + inwpfép, /T =0, (B4)

with solution

5¢n nawy
T nop—o’

5fn:_

(BS)

Note that this equation implies that ofy = 0. This n=0
Fourier component is zero because this is the bounce-
averaged portion of the perturbed distribution function [the
Y-independent part; see Eq. (B3)]. For this term, the linear-
ized Vlasov equation merely phase-mixes the distribution
function along unperturbed orbits in phase space, which by
conservation of particle number and phase-space area
implies that the bounce-averaged distribution function is
unaffected by potential perturbations. This was also seen by
bounce-averaging the adiabatic form of 0f [see Eq. (18)], but
here, we see that the result also applies to the fully nonadia-
batic distribution.

For n # 0, Eq. (B5) can be rewritten in a useful way by
subtracting and adding o in the numerator, yielding

9% (1 +L). (B6)
T nwp —

Substitution into Eq. (B3) and application of Eq. (B2) in
order to re-sum the Fourier series for d¢ then yield

5fn =
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__f _ . iy _ @
OF = —= (5@ S +n:§#05¢ne o w) (B7)

Noting that Redgpye ' = (5¢), the first two terms in the
parentheses are identical to the terms appearing in the adiabatic
response as given by Eq. (17). Thus, the remaining term
involving a sum over bounce harmonics yields the nonadia-
batic contribution to the perturbed distribution function. This
term vanishes as o approaches zero, as one might expect.

The full nonadiabatic form for OF keeps all physics
associated with linear Landau damping through the appear-
ance of the resonant denominator in Eq. (B7). However, for
low-frequencies, one can Taylor-expand this denominator,
which effectively neglects any Landau damping and associ-
ated filamentation of JF, and results in the slightly simpler
expression

L so—s0. 42 N
SF ~ (5(1) Ocpo +— >

r b n=—00,n#0

%e"”o . (BY)

This expression can be put back into (z,v,) coordinates
by means of the following argument. The last term in the
parenthesis (the nonadiabatic term) can be written as

v
0 = 0P, i = , 1
@y W 05N b gy 4 L
@ n=—00,n#0 n ‘ @ n=—00,n#0 (’bn le l/j i in
(B9)

However, if  is defined using the condition that iy = 0 at the
left turning point z =z, (so that }y = 7 at z=z,), then it fol-
lows that d¢, is even in n, so the term J¢,/in can be
dropped because the sum is antisymmetric in n. This is
because according to Eq. (B2),

2n

o dlp —in
30, = | S 00t P ™

0

z

B ZJ dz
1) V.(E.,2)

1

0®(z) cos (ny(1,z)), (B10)

where the second form has converted the integral over  to
one over z using the action-angle relation 0z/|, = v./wy,
after breaking the integral over y into one running from 0 to
7, for which z runs from z; to z, with v, > 0, and one running
from 7 to 27, for which z runs from z, to z; with v, < 0. This
equation shows explicitly that d¢, is even in n, so one can
drop the odd ¢, /in term in the sum in Eq. (B9) and re-sum
the Fourier series using Eq. (B2), to obtain the lowest-order
nonadiabatic contribution 5F") to 5F

of 5

CU},T

5F(m1) = _ %einxﬁﬂ‘wt

n=—00,n#0 n
of v
1109)
- —TJdlp(acp — (5D)).

Wp
0

(B11)
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Again using 0z/0y|, = v./w; and assuming that v. > 0 so
that 0 < < =, the integral over y transforms to

z

sl — _1of J dz
T JV.(E.,Z)

(0D() — (0D)(E.)), v. > 0.

(B12)

For v, < 0, y > =, so we break the  integral in Eq. (B11)
into a portion that runs from ¥ =0 to = © (for which 7/
runs from z; to z,), and an integral from 7 to Y (for which
v, < 0 and 7’ runs from z, back to z)

22

s _ _1f J V(L (60(Z) — (50) (E.))

T EZ,Z')
iof [ d ,
+TJ VAE 7 O%E) — OD)(E)), v: <0.
(B13)

However, the first integral vanishes due to the definition of
the bounce average, see Eq. (8). We may therefore change
the sign of this term without changing the result, leading to

sF0a) _EJ dz
T JV.(E.,?)

1

(0D(2) — (SD)(E.)), v: < O.

(B14)

Since E. is even in v,, Eqs. (B12) and (B14) show that
OF") is odd in v.; as opposed to the adiabatic distribution
given by Eq. (17), which is even in v,. This provides a useful
way to distinguish the adiabatic and nonadiabatic contribu-
tions to the distribution function in the experiments. Also,
this implies that the nonadiabatic distribution makes no con-
tribution to the perturbed density or potential; but it does
produce a perturbed fluid velocity oU.(z, 1)

novU,

JdevZReéF(””)e_i(”’
. i dZ7 0
_ J v.dv,Sign(v;) J ViED) E.7) E of,

z
1

(B15)

where we have substituted for JF" using Eqs. (B12) and
(B14), of (E.,7,t) is the adiabatic distribution given by Eq.
(17), and we have used ReiwdFe " = —f /Ot. Reordering
the integration yields

o, R
nolU, = ajdz Jdvzéff ajdzén(z,t), (B16)

where on is the adiabatic density change. This implies that
the particle flux from the nonadiabatic fluid velocity U, pro-
duces the adiabatic density change dn, as expected from the
linearized continuity equation
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1o} 0
5 (ndU.) = —aén. (B17)

The nonadiabatic distribution can be simplified further
for the case of particles undergoing specular reflections in a
central squeeze potential and slowly moving end walls, and
neglecting self-consistent effects [i.e., the model discussed
previously in relation to Egs. (19)—(27)]. We will simplify
further by assuming that L, = —dL, = 0L, i.e., both ends
move in the same direction, with the same amplitude, as in
Fig. 1. For this case, we found that the end potentials satisfy
0¢p = —0L(1)0¢/0z; see the discussion preceding Eq. (21).
Using this in Eqgs. (B12) and (B14) and assuming passing
particles, for which the system symmetry implies (6¢) = 0,
the same operations as were used in deriving Eq. (21) yield

mv,f
T

SFn) = iwdL, mv? > 2¢,. (B18)
This is the expected result for the passing particles in the
absence of collective effects: RedF"™e~" is the first-order
correction to a shifted Maxwellian distribution of the form
exp [—-m(v. — 6L)?*/(2T)]/\/2nT /m. For passing particles,
the slowly moving walls simply cause the plasma to move
along with the walls.

When collective effects are included in this specular-
reflection model, however, there is an extra term in the per-
turbed potential caused by density changes, and given by the
solution to Eq. (27). When this potential is added to Egs.
(B12) and (B14) and the z-integral is performed, one obtains

(na) __ 7mvﬂc . . i . 5(}')[,712, z < Ly
OFV"Y = T imdL Tvzlw _54)[)72([4_2)’ S, [

mv: > 24,

(B19)

This extra term in 6F " is caused by passing particles slosh-
ing from one end of the plasma to the other as they Debye-
shield the potential produced by the trapped particles. Note
that since L16¢, | + L20¢,, = 0 (see Eq. (26) for the case
OL| + 0L, = 0), the distribution is continuous across the
squeeze barrier at z=L;.

On the other hand, for trapped particles, this extra self-
consistent potential does not affect Jf because, for these par-
ticles, 6¢,,; = (0¢, ;). However, the end potential due to the
moving walls is still d¢p = —J0LI¢/0z, but now (d¢) is
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given by Eq. (21) (for particles to the left of the squeeze,
with a change in sign for particles to the right). Using these
results in Eqgs. (12) and (B14), and noting that z; = 0 for
trapped particles on the left and z; =L, for trapped particles
on the right yield, after some work,

z < Ly

_{ sL/L
gpna) — _MVzp { 1) }
7/ = 2io z>Li 7 (B20)

—OL/L,,

mv2 < 2¢,.

At the plasma ends (z=0 and z=L), Eqs. (B19) and
(B20) reduce to OF") = —(mv.f/T)imdL, which implies
that the perturbed fluid velocity at the ends is 0U, = 9JL/0r.
Thus, as expected, the fluid velocity matches that of the
moving ends.
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