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When weakly collisional plasmas have locally trapped particle populations, perturbations to the

plasma equilibrium (such as waves or static field-errors) can induce phase-space discontinuities in

the particle distribution function that strongly enhance entropy production, plasma loss, and wave

damping via superbanana transport. This paper presents a simple version of this superbanana trans-

port process, wherein a plasma is heated as it is slowly forced back and forth across a squeeze

potential (at a frequency x that is small compared with the particle bounce frequency). The squeeze

potential traps low-energy particles on either side of the squeeze, but particles with higher energy

can pass through it. Trapped and passing particles have different responses to the forcing, causing a

collisionless discontinuity in the distribution function at the separatrix between the trapped and

passing particles. Expressions for both the adiabatic and non-adiabatic distribution functions are

presented, and the heating rate caused by collisional broadening of the separatrix discontinuity is

derived. The heating rate is proportional to
ffiffiffiffiffiffi
�x
p

, provided that � � x, where � is the collision

rate (i.e., the
ffiffiffi
�
p

regime of superbanana theory). Published by AIP Publishing.
https://doi.org/10.1063/1.5001062

I. INTRODUCTION

Natural and laboratory plasmas often have several distinct

locally trapped particle populations, due to the occurrence of

local magnetic and/or electrostatic wells. When subjected to

perturbations such as plasma waves or field errors, such config-

urations can exhibit enhanced “superbanana” transport:1–3 the

locally trapped particles respond to the perturbations differ-

ently from passing particles, creating discontinuities in the

collisionless particle distribution function at the separatrix (or

separatrices) between trapped and passing particles; and colli-

sional relaxation of these discontinuities causes enhanced rates

of entropy production, wave damping, and transport of par-

ticles, momentum, and heat. The term “superbanana” refers to

the single-particle drift orbits near the separatrix energy that

are perturbed by the waves or field errors.1

In this paper, we consider an example of superbanana

transport that elucidates the basic mechanism in a simple

geometry. We consider a cylindrically symmetric nonneutral

plasma column in a strong uniform axial magnetic field, con-

fined axially by surrounding cylindrical electrodes. The mag-

netic field is strong enough that we need not consider radial

motion of the plasma at all in what follows; only axial

motions are kept in the analysis. The azimuthal rotation of

the plasma is also not important in the analysis since we

assume cylindrical symmetry throughout.

Locally trapped particles are created by the imposition

of a cylindrically symmetric squeeze potential on one cylin-

drical electrode near the axial center of the column (see

Fig. 1); the potential pushes particles away axially from the

electrode but is not large enough to cut the plasma into two.

Some particles are trapped axially on either side of the

squeeze potential, while particles with more energy can pass

through the squeeze region from one side to the other.

To this system, a small time-dependent potential pertur-

bation is applied: the end electrode potentials are oscillated

in time at frequency x, pushing the plasma back and forth

across the squeeze barrier. For a long thin plasma column of

length L, the potential changes have the effect of changing

the location of the left and right plasma ends by dL1 and dL2,

respectively. In the case of chief interest here, we take dL1

¼ �dL2 ¼ dL (Fig. 1), which can be accomplished by vary-

ing the end confinement potentials 180� out of phase (one is

increasing as the other decreases). The overall plasma length

is unchanged in this operation, but the plasma shifts to the

right and left during the end potential oscillation. As the

plasma moves to the right, the plasma trapped to the left of

the squeeze barrier is compressed and heated, while the

plasma trapped to the right is expanded and cooled, but

FIG. 1. Schematic of the geometry. A cylindrical plasma (top) is subjected

to a central squeeze potential. The end potentials are then varied (bottom) so

as to move the plasma to the right by dLðtÞ, across the squeeze. The density

changes from this plasma motion are denoted by the plus and minus signs.
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passing particles are unaffected (to first approximation).

Consequently, there is a discontinuity in the collisionless

plasma distribution function induced by the perturbation,

located at the energy separatrix /s between trapped and pass-

ing particles.

This discontinuity can produce strong plasma heating

compared with other heating mechanisms. We analyze the

regime � � x� xb, where the perturbed potential oscil-

lates at a frequency x much greater than the plasma collision

frequency �, but much less than the frequency xb at which

particles bounce from end to end. In this regime, compres-

sions and expansions can, to lowest approximation, be

treated as adiabatic and one-dimensional, which allows sim-

ple and explicit expressions for the discontinuous velocity

distribution function. The discontinuity at the separatrix is

then collisionally broadened in energy by an amount propor-

tional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T/s�=x

p
, where /s is the height of the potential

barrier (see Fig. 1). This narrow region of the distribution

function oscillates out-of-phase with the rest of the distribu-

tion due to collisional relaxation, and consequently causes

heating proportional to the region width, i.e., proportional toffiffiffi
�
p

. (For notational convenience, all temperatures and poten-

tials in this paper are expressed in energy units. For instance,

the potential /s is related to the electrostatic potential Vs

through /s ¼ qVs, where q is the particle charge.)

In a bit more detail, in every period of the oscillation,

trapped particles with kinetic energy K experience a revers-

ible adiabatic change in energy 62KdL=L (where theþ and

� signs refer to the particles trapped on the left and right

sides, respectively). But trapped particles with energies

within DW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T/s�=x

p
of the separatrix energy /s can col-

lisionally cross the separatrix,4,5 become passing, and then

retrap on either side within one oscillation period, and so, the

sign of the energy change becomes random for such particles

as they cross and recross the separatrix. This leads to a diffu-

sion in particle energy scaling as xK2ðdL=LÞ2, where

K ¼ /s for particles at the separatrix. This irreversible pro-

cess causes plasma heating. If all particles participated, the

rate of temperature increase would be of order ðxK2=TÞ
ðdL=LÞ2, where K � T is the mean particle kinetic energy.

However, these boundary-layer particles with K � /s make

up only a fraction of the total particle number. For a

Maxwellian distribution, this fraction is roughly DW=ðffiffiffiffiffiffiffiffi
T/s

p
Þ exp ð�/s=TÞ. So, the rate of temperature increase is

xð/2
s=TÞðdL=LÞ2 DW=

ffiffiffiffiffiffiffiffi
T/s

p� �
exp ð�/s=TÞ, or simplify-

ing, _T �
ffiffiffiffiffiffi
�x
p

ð/2
s=TÞðdL=LÞ2 exp ð�/s=TÞ.

Other mechanisms can also heat the plasma when the

end potentials are varied as in Fig. 1, but in the regime �
� x� xb of interest here, the superbanana transport pro-

cess dominates. For instance, wave-particle resonances can

occur, causing heating which, to lowest approximation, is �-

independent (the “plateau regime”). In this regime, the heat-

ing rate is proportional to Txðx=xbÞ5ðdL=LÞ2.6 But this

mechanism has a negligible effect due to the low frequency

assumed for the potential oscillation, x� xb.

Near-adiabatic heating due to bulk viscosity can also

occur. Here, the axial compression and expansion of the

trapped particles causes the parallel and perpendicular tem-

peratures to be unequal, and entropy production results as

collisions relax the temperature difference. However, this

mechanism causes heating of order �TðdL=LÞ2 in the regime

where � � x,7 which scales with collisionality as the first

power of �. It is therefore approximately
ffiffiffiffiffiffiffiffiffi
�=x

p
smaller than

superbanana heating that scales as
ffiffiffi
�
p

.

Collisional drag between different species of charged

particles in the plasma can also produce frictional heating

proportional to � in the regime x > �.8,9 Here, the species

react differently to the time-varying potential due to their

different masses, and collisions dissipate the velocity differ-

ences, producing heating that scales as �mðxdLÞ2. This is

small compared with bulk-viscous heating when x < xb.

This is the Drude model for resistive dissipation, P ¼ I2R,

where current I is proportional to xdL and resistance R is

proportional to �.

On the other hand, if x < �, bulk viscous heating (or

collisional drag heating) can dominate. For example, slowly

oscillating plasma ends with x < � will cause bulk viscosity

plasma heating proportional to TðxdL=LÞ2=�.6,7 This type of

heating has the expected form P ¼ I2R, where now the resis-

tance R is proportional to 1=�. Resistance R scales with colli-

sionality in this way because as � increases, collisions keep

the system closer to thermal equilibrium, so there is less dis-

sipation. This is similar to the damping of sound waves in

molecular gases, which also scales as 1=� in the regime

x < �,10 due in part to molecular attenuation (bulk viscos-

ity)11 that manifests as a lag in the equipartition between

internal energy states and translational energy.

Collisional drag heating in the regime x < � has similar

scaling. Here, frictional drag between species causes heating

that also scales as 1=� because the species “collisionally-

lock”: the drag force couples the motion of each species, so

they have nearly the same response to the potential

oscillation.9

However, in the regime � � x, the intuition that fol-

lows from P ¼ I2R fails because the collisions are so weak

that near-discontinuities (boundary-layers) develop in the

distribution function, and relaxation of these boundary layers

dominates the heating. Consequently, scaling of the heating

with � and x is quite different in this weak collisionality

regime.

Heating proportional to
ffiffiffi
�
p

, caused by a collisional

boundary layer at the separatrix between trapped and passing

particles, is a simple example of superbanana transport in the

so-called
ffiffiffi
�
p

regime.1–3 This regime is of importance in the

neoclassical transport expected for weakly collisional fusion

plasmas in devices such as stellarators or “bumpy tori.”

The geometry of the heating mechanism considered here

is sufficiently straightforward that expressions for plasma

heating can be evaluated and compared directly with experi-

ments. Such experimental comparisons will be considered in

a separate paper.12 Here, we lay out the theory. This geome-

try has been considered previously in studies of superbanana

transport that involves the damping of low-frequency drift

waves (trapped particle diocotron modes)13–15 and cross-

magnetic field particle transport.4,5,16–19 In those cases,

cross-magnetic field drifts and plasma rotation were
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necessary ingredients in the theory. Here, these effects can

be ignored, further simplifying the analysis.

Nevertheless, the self-consistent plasma response to

sloshing through a squeeze potential is non-trivial even in

this simple geometry. As trapped particles are compressed or

expanded, the passing particles stream along the magnetic

field in order to shield out the resulting potential changes.

These potential changes couple the plasma response at dif-

ferent radii. For instance, at larger radii within the plasma,

most particles are trapped by the squeeze potential, and so, a

slosh to the right as shown in Fig. 1 increases the density to

the left of the squeeze and decreases it to the right. However,

at smaller radii, geometric effects and plasma screening

reduce the squeeze potential, and here, passing particles

dominate the plasma response. These particles stream to the

right end of the plasma column in order to shield out the den-

sity changes caused by the trapped particles at larger radii.

In Sec. II, we consider the collisionless adiabatic response

to slow variations in the external potential, including self-

consistent plasma effects. In Sec. III, we determine the effect

of weak collisions on the distribution function and evaluate

the heating. In Sec. IV, we discuss the results and consider

some outstanding questions. In Appendix A, we consider a

numerical method for solution to the self-consistent problem.

In Appendix B, we consider the lowest-order collisionless

nonadiabatic effects on the distribution function.

II. COLLISIONLESS DISTRIBUTION FUNCTIONS
UNDERGOING ADIABATIC VARIATIONS

This section describes adiabatic invariant theory for the

collisionless evolution of a distribution function under slow

time-variation of external potentials. For charged particles

of mass m moving in a uniform magnetic field Bẑ and a

time-dependent potential /ðr; z; tÞ, the particle energy E
¼ 1

2
mv2 þ /ðr; z; tÞ is not a constant of the motion. However,

there are approximately conserved (adiabatic) invariants of

the motion. The perpendicular energy E? ¼ 1
2

mðv2
x þ v2

yÞ is

one such invariant (the “cyclotron invariant”) as is the radial

position r of the guiding center. Since r and E? are adiabatic

invariants, for notational convenience, we will suppress any

dependences on these variables in the following analysis, for

example, writing / ¼ /ðz; tÞ.
The axial (z) motion of a particle is also constrained by

the parallel adiabatic invariant J, which is the area enclosed

by the orbit in the phase space of the axial motion, holding t
fixed in the potential

JðEz; tÞ ¼
þ

pzdz

¼ 2

ðz2

z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m Ez � /ðz; tÞ½ �

p
dz; (1)

where the axial energy Ez � E� E?, and z1 and z2 are

turning-points of the axial motion, found from the roots of

the equation /ðz; tÞ ¼ Ez.

Consider particle motion starting in an initial potential

/ðzÞ that slowly evolves in time toward a final potential

/0ðzÞ ¼ /ðzÞ þ d/ðzÞ. Under this evolution, the axial energy

Ez changes to E0z, and the adiabatic invariant evolves in func-

tional form from JðEzÞ to J0ðE0zÞ where

JðEzÞ ¼ 2

ðz2

z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m Ez � /ðzÞ½ �

p
dz; (2)

J0ðE0zÞ ¼ 2

ðz02
z0

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m E0z � /0ðzÞ
� �q

dz: (3)

In Eq. (3), the primes on the turning points indicate that they

have moved due to the change in energy and potential.

According to the theory of adiabatic invariance, the

value of the invariant is unchanged under this evolution

J0ðE0zÞ ¼ JðEzÞ; (4)

in other words, the phase-space area of the initial orbit is the

same as that of the final orbit. This equation, together with

Eqs. (2) and (3), allows one to determine the final energy E0z
in terms of the initial energy Ez.

An explicit formula for the energy change can be found

when the change in potential d/ðzÞ is small. Defining dEz

¼ E0z � Ez and Taylor expanding Eq. (3) to first order in

small dEz and d/ yield

J0ðE0zÞ ¼ 2m

ðz02
z0

1

VzðEz; zÞdzþ 2

ðz02
z0

1

dEz � d/ðzÞ
VzðEz; zÞ

dz; (5)

where

VzðEz; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEz � /ðzÞÞ=m

p
(6)

is the particle speed as a function of position, for given

energy Ez. Note that, although VzðEz; zÞ approaches zero at

the end points of the integration, this Taylor expansion to

first order is still allowed because the integral in the second

line is integrable (provided Ez 6¼ /s, the separatrix energy).

In the second integral, z01 and z02 can be replaced by z1 and

z2, respectively, because the difference between the primed

and unprimed turning points is small, and the integral is

already small. In the first integral, one can make the same

replacements because the integrand vanishes at z¼ z1 and

z¼ z2, so that small variations in the turning points produce

changes in the integral value only at the second order in

their variation. Therefore, to the first order in d/, the first

integral equals JðEzÞ [see Eq. (2)], and Eq. (5) can then be

expressed as

J0ðE0zÞ ¼ JðEzÞ þ 2

ðz2

z1

dEz � d/ðzÞ
VzðEz; zÞ

dz: (7)

However, according to Eq. (4), the adiabatic invariant is

unchanged, so the integral in Eq. (7) must equal zero.

Rearranging terms then implies that the energy change dur-

ing the evolution is given by
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dEz ¼ hd/i � 2

s

ðz2

z1

d/ðzÞ
VzðEz; zÞ

dz; (8)

where hi is the “bounce-average” operation, a time-average

along the orbit, s is the orbit period

sðEzÞ ¼ 2

ðz2

z1

dz

VzðEz; zÞ
; (9)

and hd/iðEzÞ is the bounce-averaged change in the potential,

averaged over a particle orbit of energy Ez.

Equation (8) can also be obtained directly from the

Hamiltonian equations of motion of a particle in a time-

varying potential. These equations imply that the time rate of

change of the particle’s energy is determined by the explicit

time-variation in the potential according to

dEz

dt
¼ @/
@t
: (10)

Integrating both sides from the initial to final time yields

dEz ¼
ðtf
ti

dtð@/ðz; tÞ=@tÞjz¼zðtÞ: (11)

Noting that z(t) oscillates rapidly as particles bounce between

turning points allows one to replace the integrand by its

bounce average, yielding dEz ¼
Ð tf

ti
dt@h/i=@t: Performing

the time integral then returns us to Eq. (8).

A. Adiabatic change in the particle distribution
function

We now turn to a description of the collisionless evolu-

tion of a distribution of particles as the potential slowly varies

in time. Consider a band of particles in phase space moving

in the initial potential /ðzÞ, and uniformly distributed

between action values J and Jþ dJ. The distribution function

for this band of particles is the phase space density f, i.e., fdJ
is the number of particles in the band. Now, as the potential

evolves to /0ðzÞ, the band of particles evolves to a new band,

but the area of the band is unchanged since this area is an adi-

abatic invariant. Since the number of particles is also

unchanged, the final phase space density in the band, f 0, must

equal the initial density f. If one considers the distribution to

be a function of energy, this result can be expressed as

f 0ðE0zÞ ¼ f ðEzÞ; (12)

which accounts for the fact that the energy of the particles

changes from Ez to E0z during the evolution.

When the potential changes by only a small amount d/,

an explicit expression for the change in the distribution func-

tion can be obtained. We first express Eq. (12) as

f 0ðE0zÞ ¼ f ðE0z � dEzÞ; (13)

then Taylor expand, and apply Eq. (8) to obtain

f 0ðE0zÞ ¼ f ðE0zÞ � hd/i@f=@E0z: (14)

The new distribution can be written explicitly in terms of

coordinates and velocities since E0zðz; vzÞ ¼ 1
2

mv2
z þ /0ðzÞ

and /0 ¼ /þ d/

f 0ðz; vzÞ ¼ f ðEzðz; vzÞ þ d/ðzÞÞ � hd/i@f=@E0z;

¼ f ðEzðz; vzÞÞ þ d/ðzÞ � hd/i½ �@f=@Ez; (15)

where, in the second line, the distribution is Taylor expanded

and the prime on the partial derivative with respect to energy

is dropped because the difference is second order in the vari-

ation. Thus, at a fixed phase space coordinate ðz; vzÞ, the adi-

abatic first-order change df in the distribution function is

df ðz; vzÞ ¼ d/ðzÞ � hd/i½ �@f=@Ez: (16)

When the initial distribution function f is a Maxwellian at

temperature T, Eq. (16) simplifies to

df ðz; vzÞ ¼ �
d/ðzÞ � hd/i

T
f : (17)

The term �d/ gives the Boltzmann response to a potential

perturbation (modulo, an additive constant required to con-

serve particles on a field line), the expected response once

collisions relax the plasma to a local thermal equilibrium

state. The term hd/i is required in the collisionless plasma

response to the potential in order that the number of particles

on every energy surface is conserved in the adiabatic pro-

cess, as required in Vlasov dynamics. Conservation of parti-

cle number on every energy surface can be proven by taking

the bounce-average of the right hand side of Eq. (17), which

averages over the energy surface chosen for the bounce-

average

hðd/ðzÞ � hd/iÞf i ¼ ðhd/i � hd/iÞf ¼ 0: (18)

B. Phase-space discontinuities from a squeeze
potential

When the equilibrium potential /ðzÞ has an applied

“squeeze” (i.e., a local potential maximum within the

plasma, separating two regions of trapped particles on each

side of the maximum), the adiabatic first-order change in the

particle distribution df ðz; vzÞ will exhibit discontinuities.

(We are again suppressing radial dependences for notational

convenience.) These discontinuities are caused by the differ-

ence in the response of trapped and passing particles to the

change in the potential, d/ðzÞ.
As a simple example, consider particles confined by

reflecting walls at locations z¼ 0 and z¼L. A squeeze

potential of height /s is applied at z¼L1 and is assumed to

be very narrow in z so that it produces specular reflection of

trapped particles with kinetic energies less than /s, but has

no effect on passing particles with kinetic energies larger

than /s. This plasma model approximates the situation in

experiments for which the Debye length is very small com-

pared with the plasma length, causing applied potentials to

be z-independent within the plasma, except in Debye sheaths
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at the squeeze and at the plasma ends. Particle reflection off

of the rapidly varying potential in the Debye sheath then

approximates the effect of a reflecting wall.

Now consider the effect of the small potential perturba-

tion that occurs when the end walls at z¼ 0 and z¼L are

slowly moved to z ¼ dL1 and z ¼ L� dL2, respectively

(note the minus sign in the second case). Let us first neglect

the effect of self-generated potentials. For trapped particles

to the left of the squeeze, the particle density and energy

increase since the region they are trapped in decreases in

length by dL1, and to the right of the squeeze, the density

and energy of trapped particles increase by a different

amount as that region compresses by dL2, and for passing

particles, the density and energy increase by different

amounts, as the plasma compresses by dL1 þ dL2. For

instance, if dL2 ¼ �dL1 (the case of interest in our experi-

ments), the passing particles’ energy is unchanged (in adia-

batic theory).

In more detail, the energy change for trapped particles

to the left due to the 1 D adiabatic compression is dEz

¼ mv2
z dL1=L1, and to the right, dEz ¼ mv2

z dL2=L2 where

L2 ¼ L� L1, and for passing particles dEz ¼ mv2
z ðdL1

þdL2Þ=L. Then according to Eq. (13) (after Taylor-

expanding, and assuming that f is a Maxwellian), the trapped

particle distribution function to the left and the right of the

squeeze is

df ¼

mv2
z dL1

TL1

f ; v2
z < 2/s=m & z < L1

mv2
z dL2

TL2

f ; v2
z < 2/s=m & z > L1

8>>><
>>>:

(19)

for trapped particles to the left (right) of the squeeze, while

for passing particles

df ¼ mv2
z ðdL1 þ dL2Þ

TL
f ; v2

z > 2/s=m: (20)

Thus, a discontinuity develops in the perturbed distribution

at the separatrix between passing and trapped particles,

which is at v2
z ¼ 2/s=m.

Equations (19) and (20) also follow from Eq. (17). For a

“reflecting wall” with potential /ðzÞ that is zero away from

z¼ 0, that rises rapidly at z¼ 0 so as to cause reflections, and

that moves in z by dL1, the perturbed potential is of the form

d/ ¼ /ðz� dL1Þ � /ðzÞ. Taylor expansion then implies

d/ ¼ �dL1@/=@z. This implies that d/ ¼ 0 away from the

wall at z¼ 0, but hd/i 6¼ 0. For particles trapped to the left

of the squeeze, i.e., between a moving wall at z¼ 0 and the

squeeze at z¼ L1, the bounce-averaged potential is

hd/i ¼ 2

s

ðL1

z1

dz

VzðEz; zÞ
d/ðzÞ ¼ � 2dL1

s

ðL1

z1

dz

VzðEz; zÞ
@/
@z

¼ 2mdL1

s

ðL1

z1

dz
@

@z
VzðEz; zÞ ¼

2dL1

s

ffiffiffiffiffiffiffiffiffiffiffi
2mEz

p
� 0

� �

¼ mv2
z dL1=L1; (21)

where we used Eq. (6) in the second line, and s ¼ 2L1=jvzj
for left-trapped particles. Similar arguments can be used to

obtain the bounce-averaged perturbed potential in the right-

trapped and passing regions.

Note that the Taylor expansion of /ðz� dL1Þ used to

derive Eq. (21) requires that dL1 be small compared with the

minimum scale length of variation of /ðzÞ, which we define as

k. (In experiments,12 k is of order the Debye length.) For a rap-

idly varying “reflecting wall” potential with k� L1, the condi-

tion dL1 � k is a stringent requirement on dL1. This

requirement is a limitation of the linearization approach used to

derive Eq. (17). Nevertheless, this equation allows us to obtain

the perturbed distribution function everywhere in the plasma to

linear order in dL1, including at the plasma ends where /ðzÞ
varies on the scale of k. On the other hand, Eqs. (19) and (20)

were derived assuming that dL1 � L1, a less stringent require-

ment on dL1. However, Eqs. (19) and (20) do not hold through-

out the plasma. They are incorrect in the Debye sheaths at the

plasma ends where /ðzÞ is varying rapidly: they do not display

the density changes in the ends depicted by þ=� symbols in

Fig. 1, while Eq. (17) does so through the term d/ðzÞ, which is

not included in Eq. (19) or (20).

It is interesting that both approaches to the above

“reflecting wall” problem give the same result for df away

from the ends of the plasma, suggesting that Eq. (17) may be

useful in the central region of the plasma, away from the

ends, even for end motions that are larger than k. This is a

hopeful sign for the linear theory, since it might still apply to

experiments now being conducted12 that typically operate

with dL > k.

However, the perturbed distribution function is modified

by the self-consistent plasma potential, which is not included

in Eq. (19) or (20). The density changes associated with the

compressions/expansions produce a self-consistent potential

change d/p. This self-consistent potential change is often of

the same order of magnitude as the external potential change,

and therefore must be taken into account.

For a long plasma column, the potential change on

the left side is independent of z away from the ends and the

squeeze, i.e., for 0 < z < L1 (due to Debye-shielding). The

potential then changes sign in the squeeze region and again

becomes independent of z on the right side in the range

L1 < z < L. This implies that, for trapped particles, the self-

consistent potential change satisfies hd/pi ¼ d/p, and so,

according to Eq. (17), the trapped particle distribution is

unaffected by the self-consistent plasma potential.

However, for passing particles, hd/pi 6¼ d/p and so

Eqs. (17) and (20) imply

df ¼ mv2
z ðdL1 þ dL2Þ

TL
f �
ðd/p � hd/piÞ

T
f ; v2

z > 2/s=m:

(22)

The self-consistent potential can then be found using

Poisson’s equation. Defining d/p;1ðrÞ and d/p;2ðrÞ as the

self-consistent potential perturbation on the left and right

sides, respectively, the Poisson equation for each side is

r2
r d/p;j ¼ �4pq2dnj; (23)
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where j¼ 1, 2, r2
r ¼ 1=rð@=@rÞrð@=@rÞ, and where dnj is the

density perturbation on side j, given by the velocity integral of

the perturbed distribution functions, Eqs. (19) and (22)

dnj ¼ 2
dLj

Lj
n

ðffiffiffiffiffiffiffiffiffiffi2/s=m
p

0

dvz
mv2

z

T

e�mv2
z=2Tffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pT=m
p � 2n

ð1
ffiffiffiffiffiffiffiffiffiffi
2/s=m
p

dvze
�mv2

z =2T

�
d/p;j � hd/pi � mv2

z ðdL1 þ dL2Þ=L

T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pT=m

p : (24)

The first integral in Eq. (24) is the contribution dnj;T to the

perturbed density from trapped particles, and the second is

the contribution from passing particles, dnj;P. These integrals

can each be performed analytically

dnj;T ¼ n
dLj

Lj
ðgT � DgÞ;

dnj;P ¼ n
dL1 þ dL2

L
ðgP þ DgÞ � n

d/p;j � hd/pi
T

gP; (25)

where gT ¼ erf
ffiffiffiffiffiffiffiffiffiffiffi
/s=T

p� �
is the equilibrium fraction of

trapped particles, gP ¼ 1� gT ¼ erfc
ffiffiffiffiffiffiffiffiffiffiffi
/s=T

p� �
is the equi-

librium fraction of passing particles, and Dg ¼ 2

ffiffiffiffi
/s

pT

q
e�/s=T

is the change in these fractions caused by particles going

from trapped to passing and passing to trapped as the plasma

length varies.

For the passing particles, the term proportional to

d/p;j � hd/pi describes the density change due to Debye-

shielding. The gP factor arises because only passing particles

can move from end to end to Debye-shield the potential cre-

ated by the trapped particles. The term proportional to dL1

þdL2 is the density change of the passing particles due to the

overall change in plasma length. Here, the factor Dg arises

from particles that go from trapped to passing during the adi-

abatic energy increase caused by the length change (when

dL1 þ dL2 > 0, the plasma length decreases). For the trapped

particles, the equilibrium fraction gT is also modified by Dg
because some particles become untrapped during compres-

sion. These particles either become passing or are retrapped

on the other side. For example, if dL2 ¼ �dL1, all particles

that become untrapped on the left side are retrapped on the

right side; none become passing.

Equations (23) and (25) can be simplified by noting that,

for the passing particles, the bounce averaged potential in

Eq. (25) is hd/pi ¼ ðL1d/p;1 þ L2d/p;2Þ=L. Acting on this

expression with r2
r , neglecting radial variation in L1/L and

L2/L (for simplicity), and using Eqs. (23) and (25) yield

r2
r hd/pi ¼ �4pq2n

dL1 þ dL2

L
: (26)

Thus, the bounce-averaged potential change is only due to

the overall change in the plasma length. In particular, if

dL2 ¼ �dL1, the length does not change and there is no

change in the bounce-averaged potential.

The solution of Eq. (26) can then be used for hd/pi in

Eq. (25). This allows solution of Eq. (23) on each side

separately. The equation is most easily expressed in terms of

the scaled potential difference wjðrÞ, defined by the expres-

sion d/p;j � hd/pi � wjT

r2
r wj ¼

4pq2n

T
wjgP �

DLj

Lj
ðgT � DgÞ

� �
; (27)

where the scaled length change on each side j, DLj, is given

by

DLj ¼
dLjLk � dLkLj

L
; (28)

with j 6¼ k. For instance, if dL1 ¼ �dL2 ¼ dL, then

DLj ¼ dLj. The first term in the square bracket of Eq. (27) is

the Debye-shielding density change due to passing particles,

and the second term is the density change due to trapped par-

ticles, which acts as an inhomogeneous term in the differen-

tial equation.

Equations (26) and (27) can be solved numerically (e.g.,

via the shooting method) for the radial dependence of the per-

turbed potential on each side of the squeeze. These equations

are useful for a long thin plasma column with a short (in z)

applied squeeze potential. In Sec. II C we consider general

expressions for the self-consistent potential change, applica-

ble to realistic plasmas with an applied squeeze.

C. Self-consistent effects

In this section, we derive a general expression for the

change in the self-consistent potential from an external

potential that changes adiabatically. The total potential

change d/ can be broken into a portion d/ext produced exter-

nally by variation of voltages on external electrodes, and a

portion d/p produced by the plasma response to the external

potential variation: d/ ¼ d/ext þ d/p. The external potential

is a solution of Laplace’s equation, r2d/ext ¼ 0, depending

only on boundary conditions given by the voltage change on

the electrodes. In contrast, the plasma potential satisfies

Poisson’s equation

r2d/p ¼ �4pq2

ð
dvzdf ðr; z; vzÞ; (29)

with boundary conditions that d/p ¼ 0 on the surrounding

electrodes. Since df depends implicitly on d/p, this self-

consistent equation for d/p is harder to solve. Nevertheless,

d/p cannot simply be neglected because it is often of the

same magnitude as d/ext.

Assuming that the initial distribution function f is of

Boltzmann form in z and vz, i.e., f ¼ NðrÞ exp ½�Ez=T�,
where N(r) is any function of r, the perturbed distribution

function df is given by Eq. (17) which leads to

r2d/p¼
4pq2n

T
d/pþd/ext�

ð
dvz

e�mv2
z =2Tffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pT=m
p hd/pþd/exti

 !
;

(30)

where nðr; zÞ ¼ NðrÞe�/ðr;zÞ=T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pT=m

p
is the initial plasma

number density. For a given external potential perturbation
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d/extðr; zÞ, Eq. (30) is an inhomogeneous linear integro-

differential equation for the perturbed plasma potential

d/pðr; zÞ. The equation is nonlocal in z due to the appearance

of the bounce-average operator h i. The nonlocality can be

seen explicitly by substituting the form of the bounce-

average operator into Eq. (30) [see Eq. (8)]

r2d/p¼
4pq2n

T
d/pðr;zÞþd/extðr;zÞ�

ð
dvz

e�mv2
z =2Tffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pT=m
p

0
B@

� 2

sðEz;rÞ

ðz2ðEz;rÞ

z1ðEz;rÞ

dz0

VzðEz;z0Þ
d/pðr;z0Þþd/extðr;z0Þ
� �1CA;

(31)

where, in the velocity integrations, we must remember that

energy Ez depends on vz as Ez ¼ mv2
z=2þ /ðr; zÞ.

D. Self-consistent evaluation of the perturbed
adiabatic plasma potential

In this section, we describe the numerical results that

solve Eq. (31) for the self-consistent perturbed potential in

realistic geometry. In current experiments, this full solution

is required because the plasma is not sufficiently long and

the squeeze region is not sufficiently narrow to make Eq.

(27) a good approximation. The method employed in the

solution is discussed in Appendix A. The method solves the

integro-differential equation (31) on a radial and axial grid

for a given plasma equilibrium and a given perturbed exter-

nal potential due to voltage changes applied to the cylindri-

cal end electrodes.

In Fig. 2(a), the contour plot of the equilibrium density

n(r, z) is displayed for a typical nonneutral plasma with a

temperature of T ¼ 0:45 eV, computed using standard tech-

niques20 in a cylindrical Penning-Malmberg trap geometry.

Here, L0 ¼ 23:24 cm is the length scale of the computation

volume, and the density is measured in units of 106cm3. The

plasma is confined axially by 100 eV potentials applied to

cylindrical electrodes at each end, and a squeeze potential of

15 eV is applied to a cylindrical electrode that runs from

z ¼ 0:5L0 to z ¼ 0:65L0. The cylindrical electrode radii are

2.86 cm, and the plasma radius is roughly 0.7 cm, although

this varies with z considerably due to the applied squeeze

potential.

In Fig. 3(a), contour plot of the perturbed density

dnðr; zÞ is displayed, computed by solving Eq. (31) using the

numerical method described in Appendix A, using 401 axial

grid points and 128 radial grid points. (It may be useful to

compare this with the schematic in Fig. 1.) This is the colli-

sionless adiabatic density response to a change in the left and

right electrode potentials of þdV and �dV, respectively,

where dV ¼ 10 eV (i.e., 10% changes in the 100 eV end

potentials). The plasma moves to the right due to this wall

voltage change, implying a relatively large positive density

change on the right plasma end and a negative density

change at the left end. Away from the ends, and at larger

radii near the radial plasma edge, most particles are trapped

by the squeeze potential, and so the plasma density increases

on the left side and decreases on the right side as the trapped

particles are compressed on the left and expanded on the

right. However, at smaller radii, most particles are able pass

through because the Debye-shielded squeeze potential is

considerably smaller, and here, the plasma density response

changes sign as these passing particles Debye-shield the

trapped particle response at larger radii. This behavior has

been shown schematically in Fig. 1 by theþ and –signs.

Figure 4 displays the bounce-averaged perturbed poten-

tial hd/iðEz; rÞ computed at radius r=L0 ¼ 0:63 cm=23:24 cm

¼ 0:027 for a particle with energy Ez, plotted as a function

of Ez. This potential is positive for particles trapped on the

left side of the squeeze potential, where the plasma has been

compressed by the applied electrode potential change dV. On

the right side, the plasma response is opposite in sign for the

trapped particles. On each side, Debye-shielding arising from

the plasma potential d/p reduces the size of hd/i by about

FIG. 2. Equilibrium density contours (in units of 106cm3) in a T ¼ 0:45 eV

plasma to which a 15 eV squeeze potential is applied to a cylindrical elec-

trode just to the right of the plasma center. Here, L0 ¼ 23:24 cm, and the

electrode radius is 2:86 cm.

FIG. 3. Adiabatic density response divided by the central density,

dnðr; zÞ=nðr ¼ 0; z ¼ L0=2Þ, due to an end potential perturbation of þ10 eV

on the left and �10 eV on the right.
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a factor of 2 compared with the bounce-averaged external

potential perturbation hd/exti (the dashed lines). For the pass-

ing particles, which average over the potential on the left

and right sides, the bounce-average of the perturbed potential

is almost zero. The minimum energies plotted, roughly

27T ¼ 12 eV, arise from the minimum values of the equilib-

rium plasma potential at this radius (with a slightly different

minimum value on the left and right sides). The plot shows

that particles with kinetic energies up to about 3T ¼ 1:4 eV

are trapped at this fairly large radius; in other words, almost

all particles are trapped.

Figure 5 displays the bounce-averaged perturbed poten-

tials plotted versus energy at a series of radii. The plot shows

that at all radii hd/i � 0 for passing particles, hd/i > 0 for

left-trapped particles (when dV > 0), and hd/i < 0 for right-

trapped particles. At radii near r¼ 0, the range of energies

over which particles are trapped is small, roughly 0:3T, cen-

tered at the plasma potential Ez � 35T. However, at larger

radii, the range of energies over which particles are trapped

increases because the height /s of the squeeze potential bar-

rier increases with increasing radius. Thus, the fraction of

trapped particles gT is an increasing function of radius. One

can also see that the minimum potential energy for a particle

at a given radius decreases with increasing radius, from

about 35T at r¼ 0 to about 22T at the plasma edge, due to

the fall-off with radius in the self-consistent equilibrium

plasma potential.

The discontinuity in the bounce-averaged perturbed

potential hd/i produces a discontinuity in the perturbed dis-

tribution function df [see Eq. (17)]. In Fig. 6, the perturbed

distribution function at radius r ¼ 0:63 cm is plotted versus z
and vz. The distribution is divided by the equilibrium distribu-

tion f in order to emphasize large velocities where the discon-

tinuity is more noticeable. The separatrix at energy Ez ¼ /s

forms a “figure eight” curve and the discontinuity in df along

this curve is apparent as an abrupt shift in the contours. In

Fig. 7, the perturbed distribution is displayed versus velocity

at two values of z and at the same radius as in Fig. 6. At

z=L0 ¼ 0:35, a location chosen well away from the plasma

ends, and from the squeeze, the distribution is close to that

given by the simplified model of Eqs. (19) and (22): df=f
is roughly quadratic in vz for trapped particles and nearly

constant in vz for passing particles (when dL2 ¼ �dL1).

However, at z=L0 ¼ 0:5, nearer the squeeze region, the per-

turbed distribution function deviates significantly from the

simplified model.

FIG. 5. Bounce-averaged perturbed potential versus energy Ez at several

radii within the plasma.

FIG. 6. Contour plot in axial position and velocity of dfT=ðf dVÞ, where df
is the perturbed adiabatic distribution function [Eq. (17)] at radius

r ¼ 0:63 cm, f is the equilibrium distribution function at that radius, and

dV is the perturbed end potential. Velocities are scaled to vt ¼
ffiffiffiffiffiffiffiffiffi
T=m

p
, the

thermal speed, and positions to L0 ¼ 23:24 cm. The dashed curve is the

zero contour. Note the discontinuity at the separatrix energy given by

the solid black curve.

FIG. 4. Solid lines: Bounce-averaged perturbed potential hd/i for a particle

with energy Ez, plotted versus Ez, at radius r ¼ 0:63 cm (r=L0 ¼ 0:027).

Dashed lines: Bounce-averaged external potential hd/exti. The potentials are

scaled to the applied end potential perturbation dV.

FIG. 7. Plots of dfT=ðfdVÞ versus velocity at two axial positions, at radius

r ¼ 0:63 cm.
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III. COLLISIONS AND HEATING

In this section, we consider the effect of interparticle

collisions on the perturbed velocity distribution, focusing

on the effect of collisions on the discontinuity in the distri-

bution function at the separatrix between trapped and pass-

ing particles. In the
ffiffiffi
�
p

regime where � � x� xb,

collisions smooth out this discontinuity, producing a nar-

row collisional boundary layer at the separatrix, where par-

ticles are able to randomly detrap and retrap, causing

entropy production and heating. The width of this bound-

ary layer scales with collisionality as
ffiffiffi
�
p

, and so does the

heating rate.

When collisions are added to the equations of motion,

we assume that the perturbed distribution function df evolves

according to a Fokker-Planck equation

@df

@t
þ vz

@df

@z
� 1

m

@/
@z

@df

@vz
� 1

m

@d/
@z

@f

@vz

¼ T

m

@

@vz
�
@df

@vz
þ mvz

T
df

	 

: (32)

The simple collision operator used here is sufficient to

describe the collisional boundary layer in the
ffiffiffi
�
p

regime.

The collision frequency � can be regarded as a function of

particle energy and position.

To describe the effect of collisions, we break df into two

pieces

df ¼ f ð�d/þ gÞ=T: (33)

The first term �f d/=T represents the linearized Boltzmann

response to the perturbed potential, and the second term fg=T
is a correction to this response. Applying Eq. (33) to (32),

we find that the function g satisfies

@g

@t
þ vz

@g

@z
� 1

m

@/
@z

@g

@vz
¼ T

m

@

@vz
�
@g

@vz
� m�vz

T

@g

@vz

	 

þ @d/

@t
:

(34)

This equation can be solved in the passing and trapped

regions and the result patched together at the separatrix so as

to produce a continuous solution for g whose first derivative

is also continuous. This has been done previously for a spe-

cial case, as in Ref. 21. Here, we note that the largest colli-

sional effect is the smoothing of the discontinuity in the

energy of the bounce-averaged (adiabatic) distribution func-

tion, and so we consider only the bounce averaged portion of

this equation, which dominates the plasma response in the

regime of interest, � � x� xb.

We first replace gðz; vz; tÞ by its bounce average

hgiðEz; tÞ. We then bounce-integrate the equation, acting on

both sides with
Þ

dz=vz, where the integral is along a colli-

sionless orbit for which energy Ez is fixed. The integral of

the collision operator is simplified by noting that

@=@vzjz ¼ mvz@=@Ezjz. We also keep only the second-

derivative term in the collision operator since this dominates

in the boundary layer where the solution for hgi varies rap-

idly with Ez. The result is

s
@hgi
@t
¼ h�iJT

@2hgi
@E2

z

þ s
@hd/i
@t

; (35)

where h�i ¼
Þ

dzmvz�=J is the bounce-averaged collision

rate. Dividing by s, we arrive at

@hgi
@t
¼ �ET2 @

2hgi
@E2

z

þ @hd/i
@t

; (36)

where �E is the energy diffusion rate, given by �E � h�iJ=sT.

Similar bounce-averaged energy diffusion equations for the

distribution function have been derived previously in associa-

tion with cross-field transport and diocotron-mode damp-

ing.4,15 This particular form is somewhat simpler because it

does not require azimuthal plasma motion. It is also more gen-

eral in that it is correct for arbitrary squeeze potentials; the pre-

vious derivations assumed a long thin plasma and a narrow

squeeze region.

In Eq. (36), hd/i changes discontinuously at the energy

separatrix (see Fig. 4), taking values hd/iðPÞ in the passing

region Ez > /s and hd/iðL;RÞ in the left and right trapped

regions respectively, where Ez < /s. However, near the sep-

aratrix, within the collisional boundary layer on each side of

the separatrix, we can treat these bounce-averaged functions

as constants, independent of energy since the boundary layer

is narrow; also, �E can be treated as constant in the boundary

layer, but taking different values �
ðjÞ
E in the different regions

(because h�i, J and s differ in each region). Then, assuming

time-dependence of the form hgi ¼ RehgiðjÞe�ixt and hd/i
¼ Rehd/iðjÞe�ixt in each region j, the general solution of Eq.

(36) is

hgiðjÞ ¼ AðjÞeaðjÞðEz�/sÞ=T þ BðjÞe�aðjÞðEz�/sÞ=T þ hd/iðjÞ; (37)

where aðjÞ ¼ ð1� iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=2�

ðjÞ
E

q
, and AðjÞ and BðjÞ are undeter-

mined coefficients. We take BðLÞ ¼ BðRÞ ¼ AðPÞ ¼ 0 so that

the solutions in the trapped and passing regions do not blow

up. With these choices, the solutions match the collisionless

solution hd/iðjÞ in each region for energies far from the sepa-

ratrix energy /s. The values of the remaining undetermined

coefficients are connected by the condition that the distribu-

tion be continuous across the separatrix, which implies

hgiðR;LÞ ¼ ðgs � hd/iðR;LÞÞeaðR;LÞðEz�/sÞ=T þ hd/iðR;LÞ;
hgiðPÞ ¼ ðgs � hd/iðPÞÞe�aðPÞðEz�/sÞ=T þ hd/iðPÞ; (38)

where gs is the value of hgiðjÞ on the separatrix. Finally, gs

can be determined from the condition that the total number

of particles at each radius is unchanged by the perturbation:

dN ¼
Ð

dzdvdf ¼ 0. Converting variables to ðw; JÞ, taking

df ¼ f ð�d/þ hgiÞ=T (39)

and noting that
Ð

dwd/ ¼ 2phd/i and that dJ ¼ dEs, after

integrating over the exponential boundary layer in each

region, we obtain

dN ¼ 0 ¼ fs
m

sðLÞs

aðLÞ
ðgs � hd/iðLÞs Þ

"

þ sðRÞs

aðRÞ
ðgs � hd/iðRÞs Þ þ

sðPÞs

aðPÞ
ðgs � hd/iðPÞs Þ

#
; (40)
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where fs is the equilibrium distribution at the separatrix

energy, sðjÞs is the bounce period in each region near the sepa-

ratrix energy, and the subscript s on bounce averages indi-

cates that they too are evaluated near the separatrix energy.

Solving for gs then yields

gs ¼

X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�iðjÞs sðjÞs J

ðjÞ
s

q
hd/iðjÞs

X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�iðjÞs sðjÞs J

ðjÞ
s

q ; (41)

where we have used aðjÞ ¼ ð1� iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=2�

ðjÞ
E

q
and �E

¼ h�iJ=sT.

Before proceeding, note that bounce averages are often

singular at the separatrix energy, since the period s
approaches infinity there. However, these singularities are

exponentially narrow for typical potential profiles, and we

assume that this width is small compared with the width in

energy of the collisional boundary layer, of order
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T/s�=x

p
.

In this case, the singularities are washed out by collisional

diffusion, so quantities in the above expressions that are

evaluated at the separatrix are actually averaged over the

narrow boundary layer, and are therefore not singular.

In Fig. 8, we plot RehgiðjÞ and ImhgiðjÞ in the passing,

right-trapped, and left-trapped regions, evaluated at radius

r ¼ 0:63 cm using Eq. (38), and assuming that x=2�
ðjÞ
E ¼

100 (the dashed lines). Far from the separatrix, hgi ¼ hd/i,
but at the separatrix, the discontinuity in the collisionless dis-

tribution function is smoothed out over the collisional

boundary layer. The imaginary part is nonzero only in this

layer and is of the correct sign so as to cause heating (the

phase of the distribution lags that of the external potential,

indicating drag on the distribution due to collisions).

A. Joule heating

The mean Joule heating per oscillation period of the

forcing is given by the general expression

dK=dt ¼ �
ð2p=x

0

xdt

2p

ð
d3rnðr; zÞdUzðr; z; tÞ@d/=@z; (42)

where dUz is the perturbed fluid velocity. In order to express

the integrand in terms of the perturbed density rather than

the perturbed fluid velocity, we apply an integration by parts

that converts the integrand to

dK=dt ¼
ð2p=x

0

xdt

2p

ð
d3rd/

@nðr; zÞdUzðr; z; tÞ
@z

¼ �
ð2p=x

0

xdt

2p

ð
d3rd/ðr; z; tÞ@dnðr; z; tÞ=@t; (43)

where, in the second line, we applied the linearized continu-

ity equation @dn=@t ¼ �@ðndUzÞ=@z. This form of the

Joule-heating expression can be evaluated using the per-

turbed distribution function via Eq. (33) (where again we

consider only the bounce-averaged contribution to g)

dK=dt ¼ �
ð2p=x

0

xdt

2pT

ð
d3rdvzd/ðr; z; tÞf ðr; z; vÞ

� �d _/ðr; z; tÞ þ h _gi
h i

: (44)

However, d _/ðr; z; tÞ is 90� out of phase with d/ and so

the time integral of this portion of the expression vanishes.

The result can be simplified further by noting that dzdvz

¼ dwdJ=ð2pmÞ; that f and hgi are independent of w; and thatÐ
dwd/ ¼ 2pRe½hd/iðjÞe�ixt�

dK=dt ¼ �
ð2p=x

0

xdt

2pmT

ð
2prdr

X
j

ð
ðjÞ

dJf

� Re hd/iðjÞe�ixt
h i

Re �ixhgiðjÞe�ixt
h i

; (45)

where the sum is over separate phase-space regions (left-

trapped, right-trapped, and passing), the subscript on the J
integral indicates an integration over the area of the given

region, and we have used h _gi ¼ Re½�ixhgiðjÞe�ixt� in a

given region. Further simplification can be affected by using

the identity

ð2p=x

0

xdt

2p
Re ae�ixt½ �Re �ibe�ixt½ � ¼ 1

2
Im a	b½ �; (46)

which implies

dK=dt ¼ � x
2mT

ð
2prdrIm

X
j

ð
ðjÞ

dJf hd/iðjÞ	hgiðjÞ: (47)

Note that the collisionless limit of Eq. (35), @hgi=@t
¼ @hd/i=@t, implies that hgi ¼ hd/i, which recovers the

adiabatic solution for df given by Eq. (17). In this case,

FIG. 8. Dashed and dotted lines are the functions RehgiðjÞ, and ImhgiðjÞ,
respectively, the real and imaginary parts of the bounce-averaged distribu-

tion function in the collisional boundary-layer analysis [see Eq. (39)], scaled

by dV and evaluated at radius r ¼ 0:63 cm, and plotted versus energy Ez.

Solid lines are the bounce-averaged perturbed potential hd/i in collisionless

theory (same as Fig. 4). The real part of hgi is in phase with the external

potential and approaches hd/i away from the separatrix. The imaginary

part, concentrated in the boundary layer, is 90� out of phase and is therefore

responsible for heating the plasma.
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Eq. (47) implies that dK=dt ¼ 0, so collisions are required in

order to produce heating.

In the
ffiffiffi
�
p

regime, we can apply Eq. (38) for hgiðjÞ to Eq.

(47)

dK=dt ¼ � x
2mT

ð
2prdrIm

X
j

ð
ðjÞ

dEzf s
ðjÞhd/iðjÞ 	

� ðgs � hd/iðjÞÞeSðjÞaðjÞðEz�/sÞ=T ; (48)

where we converted the J integral to an energy integral via

dJ ¼ sdEz, and where SðjÞ ¼ 1 in the trapped regions of

phase space (j¼R or L) and SðjÞ ¼ �1 in the passing region

(j¼P).

The integral over Ez can now be performed assuming

that the boundary layer is narrow, so that energy-dependent

quantities in the integrand can be evaluated at (or near) their

values on the separatrix

dK=dt ¼ � x
2m

ð
2prdrfsIm

X
j

sðjÞs

aðjÞ
hd/iðjÞ 	s ðgs � hd/iðjÞs Þ;

(49)

where the subscript s denotes quantities evaluated on (near)

the separatrix.

According to Eq. (40), we can add to hd/iðjÞ 	s any

j-independent factor without changing the result, so we

choose the factor �g	s , which implies

dK=dt ¼ x
2m

ð
2prdrfsIm

X
j

jgs � hd/iðjÞs j
2 sðjÞs

aðjÞ
: (50)

Finally, substituting the definition of a and taking the

imaginary part of the expression yield

dK=dt¼ 1

2m

ð
2prdrfs

X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xh�iðjÞs J

ðjÞ
s sðjÞs

2T

s
jgs�hd/iðjÞs j

2; (51)

which is manifestly positive-definite as expected for a colli-

sional heating process that must increase the entropy of the

system. We will evaluate Eq. (51) by using the collisionless

adiabatic form for hd/i determined previously, neglecting

the small correction due to the collisional boundary layer.

This is a good approximation when �=x� 1.

Equation (51) shows that the heating rate is proportional

to
ffiffiffiffiffiffi
x�
p

(provided that � � x� xb) and is also propor-

tional to the square of the applied perturbation potential dV
since d/ is proportional to dV in our linear analysis. These

scalings are as expected from our estimates in the

Introduction.

The integrand in Eq. (51) can also be written in terms of

the rate of temperature change at a given radius,

dK=dt ¼
Ð

2prdrNzðrÞð3=2ÞdT=dt, where NzðrÞ ¼
Ð

dznðr; zÞ
is the z-integrated density. This implies that

dT=dt ¼ 1

3mNz
fs
X

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xh�iðjÞs J

ðjÞ
s sðjÞs

2T

s
jgs � hd/iðjÞs j

2: (52)

This local rate of temperature increase can be measured

as a function of radius in experiments. The rate predicted by

Eq. (52) is plotted in Fig. 9 for the plasma of Figs. 2–8,

assuming that dV ¼ 10 eV; x=2p ¼ 500 Hz, and � ¼ 7:5 s�1,

an appropriate value for the collision frequency in a pure

Mgþ ion plasma at the given temperature and central density

of Fig. 2, and one that locates the plasma well within the
ffiffiffi
�
p

regime with � � x� xb. The heating is peaked off-axis

because the fraction of trapped particles (the dots) is larger at

larger radii, but the heating also vanishes when the trapped

particle fraction approaches 100% and the density falls off

(see Fig. 2), because then there are few particles at the separa-

trix energy and the discontinuity in hd/i has a little effect.

Here, the trapped particle fraction is computed as the equilib-

rium fraction of particles below the separatrix energy at a

given radius (e.g., for r ¼ 0:63 cm, the fraction of particles

within the “figure eight” separatrix shown in Fig. 6).

In order to obtain a rough scaling of the heating rate

with experimental parameters, it can be useful to further sim-

plify Eq. (51) by considering the previously discussed case

of a long plasma running from 0 < z < L with the left and

right ends moving by dL1ðr; tÞ and dL2ðr; tÞ, respectively,

and with a narrow squeeze potential of height /s applied

at z¼ L1. In this case, we found the following results in

Sec. II B: for passing particles hd/iðPÞ ¼ 2/sðdL1 þ dL2Þ=L
þhd/pi where hd/pi is the bounce-averaged perturbed

plasma potential given by the solution of Eq. (26); for

left-trapped particles at the separatrix energy /s; hd/iðLÞs

¼ 2/sdL1=L1 þd/p;1, where d/p;1ðrÞ is the perturbed plasma

potential on the left side far from the end and from the

squeeze [see Eqs. (23)–(27)]; and for right trapped particles

hd/iðRÞs ¼ 2/sdL2=L2 þ d/p;2. Also,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J
ðLÞ
s sðLÞs

q
¼ 2

ffiffiffiffi
m
p

L1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J
ðRÞ
s sðRÞs

q
¼ 2

ffiffiffiffi
m
p

L2, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J
ðPÞ
s sðPÞs

q
¼ 2

ffiffiffiffi
m
p

L. These results

together with Eq. (41) imply that gs ¼ hd/iðPÞ and that

dK=dt ¼
ffiffiffiffiffiffiffiffiffi
px�
p

T
X
j¼1;2

ð
rdrnðrÞe�/s=TLj 2

DLj

Lj

/s

T
þ wj

	 
2

;

(53)

FIG. 9. Computed heating rate versus radius (solid curve; left axis scale);

trapped particle fraction (dots; right axis scale).
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where we have used fs ¼ ne�/s=T=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pT=m

p
, and where

wjðrÞ is the scaled potential change given by the solution of

Eq. (27).

When /s=T � 1 in Eq. (27), gP 
 1 and the inhomoge-

neous terms can be Taylor expanded, yielding

1

r

@

@r
r
@wj

@r
¼ 4pq2n

T
wj �

DLj

Lj

4p
3
ð/s=pTÞ3=2

� �
: (54)

Thus, wj scales with the squeeze potential and length change

as ðDLj=LjÞð/s=TÞ3=2
, and then, Eq. (53) shows that the heat-

ing rate scales as /2
s for /s=T < 1. This agrees with the esti-

mate for the heating discussed in the Introduction.

IV. DISCUSSION

In this paper, we have developed theory for superbanana

transport in the
ffiffiffi
�
p

regime for a simple transport process:

the heating of a plasma pushed back and forth across a

squeeze potential by the variation of end confinement poten-

tials at a frequency x chosen so that � � x� xb. The heat-

ing is primarily due to collisional boundary-layers that build

up at the separatrix between the trapped and passing par-

ticles, caused by the differing responses of the trapped and

passing particles to the potential changes. The heating rate,

proportional to
ffiffiffiffiffiffi
�x
p

, and expressions for the nearly-

discontinuous particle distribution function, will be com-

pared with experiments in a separate paper.12

Entropy production scaling as
ffiffiffi
�
p

is a signature of

superbanana transport predicted to occur in several magnetic

confinement geometries of importance to fusion applications.

The purpose of our work is to describe the processes leading

to this type of transport, in a simple geometry that can be

probed experimentally.

In previous works on superbanana transport that caused

cross-magnetic field particle loss, it was observed that a

“ruffle” on the separatrix, i.e., a h asymmetry, could enhance

the transport with a loss rate scaling as �0.4,5,16–18 This

enhanced transport is caused by an effective broadening of

the boundary layer at the separatrix as the ruffle allows par-

ticles to chaotically trap and detrap. We believe that a similar

effect could be observed in the heating process considered

here. In future work, by applying a h-asymmetry to the sepa-

ratrix, we will study this chaotic heating effect in both theory

and experiment.
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APPENDIX A: NUMERICAL METHOD

In this appendix, we describe a numerical method for

the evaluation of the self-consistent perturbed plasma poten-

tial d/pðr; zÞ produced by an external potential change

d/extðr; zÞ, via solution of the integro-differential equation

Eq. (31). The homogeneous boundary conditions are that

d/p ¼ 0 at the wall radius rw ¼ 2:86 cm, and that @d/p@z
¼ 0 at the two axial ends of the computational volume,

z=L0 ¼ 0 and z=L0 ¼ 1.

First, we will re-order the integration over vz and z0 so

that we may write Eq. (31) as

r2d/p ¼
4pq2nðr; zÞ

T
ðd/pðr; zÞ þ d/extðr; zÞ

�
ð

dz0Mðr; z; z0Þ d/pðr; z0Þ þ d/extðr; z0Þ
� �

Þ; (A1)

where the kernel function Mðr; z; z0Þ is defined as

Mðr; z; z0Þ

¼ 4mffiffiffiffiffiffiffiffi
2pT
p

ð1
vzminðr;z;z0Þ

dvz

� e�mv2
z=2T

sðr;mv2
z=2þ /ðr; zÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mv2

z þ 2/ðr; zÞ � 2/ðr; z0Þ
p :

(A2)

The minimum velocity in the integration, vzmin, is the

minimum speed at point z required for a particle orbit to

reach point z0. This speed depends on whether z and z0 are

located on the same side or on the opposite sides of the

maximum of the squeeze potential at z ¼ zsðrÞ, given by

/sðrÞ � /ðr; zsÞ. If both z and z0 are on the same side of the

maximum [i.e., signðz� zsÞ ¼ signðz0 � zsÞ], then vzmin

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=mÞMaxð0;/ðr; z0Þ � /ðr; zÞÞ

p
. But, if z and z0 are on

the opposite sides of the maximum, then

vzmin ¼ Maxð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=mÞMaxð0;/ðr; z0Þ � /ðr; zÞÞ

p
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2=mÞMaxð0;/sðrÞ � /ðr; zÞÞ
p

Þ: (A3)

When evaluating Eq. (A1) on the grid, we approximateð
dz0Mðr; zi; z

0Þf ðz0Þ ’ Dz
X

j

Mðr; zi; zjÞf ðzjÞ (A4)

for any function f(z), where Dz is the z grid spacing.

However, the form for the kernel function must be modified

for the case zi¼ zj. Here, the integrand in Eq. (A2) is loga-

rithmically divergent as vz ! 0, and at this grid point, we

must regularize by replacing Mðr; zi; ziÞ with �Mðr; ziÞ
� Dz�1

Ð ziþDz=2

zi�Dz=2
dz0Mðr; zi; z

0Þ. Since z0 is close to zi, we can

Taylor expand the integrand in Eq. (A2), writing

�Mðr; ziÞ ¼ Dz�1

ðziþDz=2

zi�Dz=2

dz0
4mffiffiffiffiffiffiffiffi
2pT
p

ð1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Maxð0;aÞ
p

dvz

� e�mv2
z =2T

sðr;mv2
z=2þ/ðr; ziÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mv2

z þ 2ðz0 � ziÞEðr; ziÞ
p ;

(A5)

where Eðr; zÞ ¼ �@/=@z and a ¼ ð2=mÞðzi � z0ÞE. We

will separate out the logarithmic divergence by breaking

the velocity integral into
Ð � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Maxð0;aÞ
p dvz þ

Ð1
� dvz, where
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� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEDz=mj

p
is a small velocity. In the first velocity inte-

gral, the Maxwellian and bounce time can be evaluated at

vz¼ 0 and the velocity integral can then be performed,

yielding

�Mðr; ziÞ ¼
4

Dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pT=m

p
sðr;/ðr; ziÞÞ

�
ðziþDz=2

zi�Dz=2

dz0 log �þ
ffiffiffiffiffiffiffiffiffiffiffiffi
�2� a
p� �

� log jaj=2

� �

þ 4m

Dz
ffiffiffiffiffiffiffiffi
2pT
p

ðziþDz=2

zi�Dz=2

dz0
ð1
�

dvz

� e�mv2
z =2T

sðr;mv2
z=2þ/ðr; ziÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mv2

z þ 2ðz0 � ziÞEðr; ziÞ
p :

(A6)

In both the first and second integrals, the z0 integration can

now be performed analytically, yielding

�Mðr;ziÞ¼
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pT=m
p

sðr;/ðr;ziÞÞ
1

2
log

ffiffiffi
2
p
þ1=

ffiffiffi
2
ph i
þ 1ffiffiffi

2
p

	 


þ 4

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pT=m

p ð1
�

dvz

e�mv2
z =2T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

z þ�2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

z ��2
p� �

sðr;mv2
z=2þ/ðr;ziÞÞ

:

(A7)

For a given plasma equilibrium density n(r, z) and self-

consistent equilibrium potential /ðr; zÞ, we solve Eq. (A1)

on a grid in r and z by first evaluating Mðr; z; z0Þ on the grid

using Eq. (A2) [or Eq. (A6) when z ¼ z0]. This requires

determining the bounce period sðr;EzÞ in the given potential

/ðr; zÞ using Eq. (9), and then performing the required veloc-

ity integrations in Eq. (A2) [or Eq. (A6)] numerically. Note

that the bounce period has a different functional form on the

left and right sides of the squeeze (i.e., z < zs and z > zs,

respectively) and is singular at the separatrix energy where

Ez ¼ /sðrÞ. Evaluations of M at each grid point are required

only for points within the plasma; in the vacuum region

between the plasma and the wall at r¼ rw, we can set M¼ 0.

For a thin plasma compared with the wall radius, this fact

greatly speeds up the computation. We then formulate Eq.

(A1) as a linear matrix equation Ki;jd/pj ¼ dqj, where j
counts over the r � z grid and the inhomogeneous terms dqj

are those terms in Eq. (A1) involving d/ext, which is a given

function determined by the voltages on the cylindrical elec-

trodes. The radial and axial derivatives are finite-differenced

using standard second-order centered differences. We solve

this matrix problem numerically using the SLATEC subrou-

tine SGEFS.

APPENDIX B: NONADIABATIC EFFECTS FOR AN
OSCILLATORY EXTERNAL POTENTIAL

Here, we consider collisionless non-adiabatic corrections

to the velocity distribution function caused by slow time oscil-

lation of the external potential d/extðzÞ cos ðxtÞ (we suppress

radial dependence for notational convenience). These non-

adiabatic corrections are small when the oscillation frequency

x is small compared with the bounce frequency xb, but can

still be observed in the experiments. These corrections can be

determined by solving the Vlasov equation using action-angle

variables ðI;wÞ, where I ¼ J=ð2pÞ. In these variables, the

perturbed distribution function then satisfies the linearized

Vlasov equation

@df

@t
þ xbðIÞ

@df

@w
� @d/
@w

@f

@I
¼ 0; (B1)

where the bounce frequency xb ¼ 2p=s. For f a Maxwellian,

@f=@I ¼ �ðf=TÞ@Ez=@I ¼ �fxb=T. The perturbed distribu-

tion function df and the perturbed potential d/ are assumed

to be periodic in time with the same frequency x as the

forcing

d/ðz; tÞ ¼ RedUðzÞe�ixt;

df ðz; vz; tÞ ¼ RedFðz; vzÞe�ixt;

where dU and dF are complex amplitudes. Noting that w is a

periodic variable, so that dF and dU are both periodic in w,

one may Fourier-expand these functions in w

dU ¼
X1

n¼�1
d/nðIÞeinw; (B2)

dF ¼
X1

n¼�1
dfnðIÞeinw: (B3)

Then, Eq. (B1) becomes

�ixdfn þ inxbdfn þ inxbfd/n=T ¼ 0; (B4)

with solution

dfn ¼ �f
d/n

T

nxb

nxb � x
: (B5)

Note that this equation implies that df0 ¼ 0. This n¼ 0

Fourier component is zero because this is the bounce-

averaged portion of the perturbed distribution function [the

w-independent part; see Eq. (B3)]. For this term, the linear-

ized Vlasov equation merely phase-mixes the distribution

function along unperturbed orbits in phase space, which by

conservation of particle number and phase-space area

implies that the bounce-averaged distribution function is

unaffected by potential perturbations. This was also seen by

bounce-averaging the adiabatic form of df [see Eq. (18)], but

here, we see that the result also applies to the fully nonadia-

batic distribution.

For n 6¼ 0, Eq. (B5) can be rewritten in a useful way by

subtracting and adding x in the numerator, yielding

dfn ¼ �f
d/n

T
1þ x

nxb � x

	 

: (B6)

Substitution into Eq. (B3) and application of Eq. (B2) in

order to re-sum the Fourier series for d/ then yield
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dF ¼ � f

T
dU� d/0 þ

X1
n¼�1;n 6¼0

d/neinw x
nxb � x

 !
: (B7)

Noting that Red/0e�ixt ¼ hd/i, the first two terms in the

parentheses are identical to the terms appearing in the adiabatic

response as given by Eq. (17). Thus, the remaining term

involving a sum over bounce harmonics yields the nonadia-

batic contribution to the perturbed distribution function. This

term vanishes as x approaches zero, as one might expect.

The full nonadiabatic form for dF keeps all physics

associated with linear Landau damping through the appear-

ance of the resonant denominator in Eq. (B7). However, for

low-frequencies, one can Taylor-expand this denominator,

which effectively neglects any Landau damping and associ-

ated filamentation of dF, and results in the slightly simpler

expression

dF 
 � f

T
dU� d/0 þ

x
xb

X1
n¼�1;n 6¼0

d/n

n
einw

 !
: (B8)

This expression can be put back into ðz; vzÞ coordinates

by means of the following argument. The last term in the

parenthesis (the nonadiabatic term) can be written as

x
xb

X1
n¼�1;n 6¼0

d/n

n
einw ¼ ix

xb

X1
n¼�1;n 6¼0

d/n

ðw
0

einwdwþ 1

in

0
B@

1
CA:
(B9)

However, if w is defined using the condition that w¼ 0 at the

left turning point z¼ z1 (so that w ¼ p at z¼ z2), then it fol-

lows that d/n is even in n, so the term d/n=in can be

dropped because the sum is antisymmetric in n. This is

because according to Eq. (B2),

d/n ¼
ð2p

0

dw
2p

dUðzðI;wÞÞe�inw

¼ 2

s

ðz2

z1

dz

VzðEz; zÞ
dUðzÞ cos ðnwðI; zÞÞ; (B10)

where the second form has converted the integral over w to

one over z using the action-angle relation @z=@wjI ¼ vz=xb,

after breaking the integral over w into one running from 0 to

p, for which z runs from z1 to z2 with vz > 0, and one running

from p to 2p, for which z runs from z2 to z1 with vz < 0. This

equation shows explicitly that d/n is even in n, so one can

drop the odd d/n=in term in the sum in Eq. (B9) and re-sum

the Fourier series using Eq. (B2), to obtain the lowest-order

nonadiabatic contribution dFðnaÞ to dF

dFðnaÞ � � xf

xbT

X1
n¼�1;n6¼0

d/n

n
einw�ixt

¼ � ixf

xbT

ðw
0

dwðdU� hdUiÞ: (B11)

Again using @z=@wjI ¼ vz=xb and assuming that vz > 0 so

that 0 < w < p, the integral over w transforms to

dFðnaÞ ¼ � ixf

T

ðz
z1

dz0

VzðEz; z0Þ
ðdUðz0Þ � hdUiðEzÞÞ; vz > 0:

(B12)

For vz < 0; w > p, so we break the w integral in Eq. (B11)

into a portion that runs from w¼ 0 to w ¼ p (for which z0

runs from z1 to z2), and an integral from p to w (for which

vz < 0 and z0 runs from z2 back to z)

dFðnaÞ ¼ � ixf

T

ðz2

z1

dz0

VzðEz; z0Þ
ðdUðz0Þ � hdUiðEzÞÞ

þ ixf

T

ðz
z2

dz0

VzðEz; z0Þ
ðdUðz0Þ � hdUiðEzÞÞ; vz < 0:

(B13)

However, the first integral vanishes due to the definition of

the bounce average, see Eq. (8). We may therefore change

the sign of this term without changing the result, leading to

dFðnaÞ ¼ ixf

T

ðz
z1

dz0

VzðEz; z0Þ
ðdUðz0Þ � hdUiðEzÞÞ; vz < 0:

(B14)

Since Ez is even in vz, Eqs. (B12) and (B14) show that

dFðnaÞ is odd in vz; as opposed to the adiabatic distribution

given by Eq. (17), which is even in vz. This provides a useful

way to distinguish the adiabatic and nonadiabatic contribu-

tions to the distribution function in the experiments. Also,

this implies that the nonadiabatic distribution makes no con-

tribution to the perturbed density or potential; but it does

produce a perturbed fluid velocity dUzðz; tÞ

ndUz ¼
ð

dvzvzRedFðnaÞe�ixt

¼ �
ð

vzdvzSignðvzÞ
ðz
z1

dz0

VzðEz; z0Þ
@

@t
df ; (B15)

where we have substituted for dFna using Eqs. (B12) and

(B14), df ðEz; z
0; tÞ is the adiabatic distribution given by Eq.

(17), and we have used ReixdFe�ixt ¼ �@f=@t. Reordering

the integration yields

ndUz ¼ �
@

@t

ðz
�1

dz0
ð

dvzdf ¼ � @

@t

ðz
�1

dz0dnðz0; tÞ; (B16)

where dn is the adiabatic density change. This implies that

the particle flux from the nonadiabatic fluid velocity dUz pro-

duces the adiabatic density change dn, as expected from the

linearized continuity equation
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@

@z
ðndUzÞ ¼ �

@

@t
dn: (B17)

The nonadiabatic distribution can be simplified further

for the case of particles undergoing specular reflections in a

central squeeze potential and slowly moving end walls, and

neglecting self-consistent effects [i.e., the model discussed

previously in relation to Eqs. (19)–(27)]. We will simplify

further by assuming that dL1 ¼ �dL2 � dL, i.e., both ends

move in the same direction, with the same amplitude, as in

Fig. 1. For this case, we found that the end potentials satisfy

d/ ¼ �dLðtÞ@/=@z; see the discussion preceding Eq. (21).

Using this in Eqs. (B12) and (B14) and assuming passing

particles, for which the system symmetry implies hd/i ¼ 0,

the same operations as were used in deriving Eq. (21) yield

dFðnaÞ ¼ �mvzf

T
ixdL; mv2

z > 2/s: (B18)

This is the expected result for the passing particles in the

absence of collective effects: RedFnae�ixt is the first-order

correction to a shifted Maxwellian distribution of the form

exp ½�mðvz � d _LÞ2=ð2TÞ�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pT=m

p
. For passing particles,

the slowly moving walls simply cause the plasma to move

along with the walls.

When collective effects are included in this specular-

reflection model, however, there is an extra term in the per-

turbed potential caused by density changes, and given by the

solution to Eq. (27). When this potential is added to Eqs.

(B12) and (B14) and the z-integral is performed, one obtains

dFðnaÞ ¼ �mvzf

T
ixdL� f

Tvz
ix

d/p;1z; z < L1

�d/p;2ðL� zÞ; z > L1

� �
;

mv2
z > 2/s:

(B19)

This extra term in dFðnaÞ is caused by passing particles slosh-

ing from one end of the plasma to the other as they Debye-

shield the potential produced by the trapped particles. Note

that since L1d/p;1 þ L2d/p;2 ¼ 0 (see Eq. (26) for the case

dL1 þ dL2 ¼ 0), the distribution is continuous across the

squeeze barrier at z¼L1.

On the other hand, for trapped particles, this extra self-

consistent potential does not affect df because, for these par-

ticles, d/p;j ¼ hd/p;ji. However, the end potential due to the

moving walls is still d/ ¼ �dL@/=@z, but now hd/i is

given by Eq. (21) (for particles to the left of the squeeze,

with a change in sign for particles to the right). Using these

results in Eqs. (12) and (B14), and noting that z1 ¼ 0 for

trapped particles on the left and z1¼L1 for trapped particles

on the right yield, after some work,

dFðnaÞ ¼ �mvz

T
f ðL1 � zÞix dL=L1; z < L1

�dL=L2; z > L1

� �
;

mv2
z < 2/s:

(B20)

At the plasma ends (z¼ 0 and z¼L), Eqs. (B19) and

(B20) reduce to dFðnaÞ ¼ �ðmvzf=TÞixdL, which implies

that the perturbed fluid velocity at the ends is dUz ¼ @dL=@t.
Thus, as expected, the fluid velocity matches that of the

moving ends.
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