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Ill 

Experiments are presented on asymmetry-induced particle transport in a 

magnetized, pure electron plasma confined in a cylindrical trap. This transport 

appears as the diffusive-like expansion of the plasma column across magnetic field 

lines, and is generic to many neutral and nonneutral plasma devices. Measurements 

of transport induced by 3 different types of asymmetry are presented. 

Definitive measurements characterize the "rotational pumping" of a plasma 

column which is displaced from the trap axis. Rotational pumping is the collisional 

dissipation of the axial compressions caused by E x B rotation of the column through 

asymmetric confinement potentials; here, the confinement potentials appear asym­

metric only because of the displacement of the column. This rotational pumping 

transport dissipates electrostatic energy but conserves angular momentum by simul­

taneously decreasing the displacement, which damps them= 1 diocotron mode. 

The rotational pumping rate is proportional to the collisional temperature 

equipartition rate, which drops precipitously in the cryogenic, strongly magnetized 
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regime; surprisingly, the transport rate is otherwise independent of magnetic field. 

The observed rates are in close agreement with a new theory by Crooks and O'Neil. 

The unusual temperature dependence of the transport explains previously observed 

"sawtooth" oscillations of the plasma displacement. 

Them= 1 diocotron mode can also be damped by a "squeeze" perturbation, 

which is a static voltage applied to half the length of the trap. The measured 

dependence of the damping rate with temperature, density, and plasma radius is 

similar to that observed for rotational pumping. However, the Crooks and O'Neil 

theory predicts that the squeeze perturbation should decrease the damping rate, in 

contradiction with the observed increase. Futhermore, the measured rates are not 

suppressed by strong magnetization as are the rotational pumping rates. 

Small, azimuthal asymmetries inherent in the trap cause "anomalous" trans­

port even in on-axis plasmas. When the E x B rotation frequency of the plasma 

is less than the bounce frequency of a thermal electron, the transport rate is ob­

served to strongly decrease with increasing temperature, increasing magnetic field, 

or decreasing density. However, when the bounce frequency is less than the rotation 

frequency, the transport rate is independent of temperature. 
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Chapter 1 

Introduction and Summary 

This thesis presents extensive, detailed measurements of asymmetry-induced, 

cross-field particle transport in trapped nonneutral plasmas, showing quantitative 

agreement with theory. The experiments characterize 3 different types of asymmetry­

induced transport: a new "rotational pumping" transport which results from asym­

metric end confinement fields; "squeeze damping," which results from axial variations 

in the wall potential; and "anomalous" transport, which results from asymmetries in 

the nominally cylindrical trap. Most striking is the "rotational pumping" transport, 

which occurs in plasmas which are displaced from the axis of the cylindrical trap. 

The transport rate is measured over a wide range of plasma parameters, including 4 

orders of magnitude in temperature. In the cryogenic, strongly magnetized regime, a 

precipitous drop in the transport rate in observed. This unusual temperature depen­

dence explains previously observed complex, nonlinear "sawtooth" oscillations of the 

plasma displacement and temperature. Quantitative numerical calculations of the 

3-D plasma end shapes and confinement potentials are obtained using the measured 

charge density profiles, enabling quantitative comparison with theory. 

Magnetic and electrostatic asymmetries drive particle transport in many neu­

tral and nonneutral plasma confinement devices. In magnetic mirrors, it has long 

been postulated that particles whose orbits are resonant with field asymmetries en-

1 
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hance radial diffusion [55, 56], but experimental verification is difficult [23, 28, 54). 

In tokamaks, "magnetic pumping" by the poloidal variation in the magnetic field 

is thought to dissipate poloidal rotation [59, 60]. In nonneutral traps, confinement 

times much greater than the rotation and transit times are important for a number 

of technologies and experiments [21, 24, 25, 64]; but trap asymmetries can degrade 

confinement [11, 12, 15, 41]. Nonneutral plasmas are often approximated as 2D 

guiding-center fluids on the rotational timescale [40, 29, 42] with 3D transport pro­

cesses causing dissipative or viscous effects [13, 45, 46]. 

The pure electron plasmas described in this thesis were confined in the CV 

Penning-Malmberg trap [1]. This liquid-helium-cooled trap consists of a series of 

conducting cylinders in an axial magnetic field. Negative voltages on the end cylin­

ders confine the plasma in the axial direction, while the magnetic field gives radial 

confinement. The unneutralized space-charge fields give rise to E x B drifts, which 

cause the plasma to rotate around its own axis. Chapter 2 describes the CV trap, 

the characteristics of the confined plasma, and the measurements and manipulations 

which can be performed on the plasma. The most unique aspect of the CV trap is 

that the strong magnetic field causes the electrons to cool through cyclotron radi­

ation. At cryogenic temperatures, the electrons become "strongly magnetized" [2]. 

In this regime, the cyclotron radii of the electrons become so small that the electron 

motions parallel to the magnetic field and the motions perpendicular to it are no 

longer collisionally coupled. 

The first class of asymmetry-induced transport presented in this thesis is 

the ubiquitous "anomalous" loss of particles due to small, azimuthal asymmetries 

in the cylindrical trap. These asymmetries exert a drag on the rotating plasma, 

causing it to slowly spin down and expand. In Chapter 3, I present measurements 

of anomalous transport over a wide range of plasma densities, temperatures, and 
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magnetic fields. I have found, somewhat unexpectedly, that the lifetime of a plasma 

can be extended up to 3 orders of magnitude by increasing its temperature. At 

high enough temperatures, the anomalous transport rate is so slow that the primary 

transport mechanism is the loss of angular momentum by cyclotron radiation. The 

plasma lifetime is also strongly dependent on density; a factor of 5 increase in density 

can cause a thousandfold increase in the transport rate. These results explain the 

anomalously short plasma lifetimes found for the CV trap relative to the EV and V' 

traps [11, 12]. These two devices have similar geometries to the CV apparatus, but 

have much lower densities and magnetic fields, and a much narrower temperature 

range. 

Comparing my measurements to the plasma lifetimes measured on two other 

traps, I have found that the transport rate on all three traps can be empirically 

estimated by comparing the E x B rotation frequency of the electrons, fE, to the 

mean axial bounce frequency, fB· Lifetimes increase approximately as (JB/ fE) 2. 

However, I have also found that when fB < fE this scaling no longer holds, as the 

transport rate is then independent of temperature. This temperature plateau has 

not been observed on other pure electron plasma devices. 

These scalings with plasma parameters are consistent with the constraints 

placed on the transport by conservation of energy and angular momentum. These 

constraints stipulate that the plasma can expand only if it increases in temperature, 

and that the temperature can increase only by breaking adiabatic invariants associ­

ated with the cyclotron and axial bounce motions of the electrons. The breaking of 

these invariants becomes more diffcult as fB/ fE increases, resulting in the observed 

increase in the plasma lifetime. However, the mechanism by which the field asym­

metries break the adiabatic invariants and transport the electrons radially is still 

unknown. 
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Much better understood than anomalous transport is the radial expansion 

and mode damping caused by the "rotational pumping" of a plasma column which 

is displaced from the trap axis. Rotational pumping is the dissipation, through 

electron-electron collisions, of the axial compressions which are caused by E x B 

rotation of the column through asymmetric confinement potentials. Here, the con­

finement potentials appear asymmetric only because of the displacement of the col­

umn away from the symmetry axis of the trap. Measurements of rotational pumping 

transport are presented in Chapter 4. I find that this rotational pumping transport 

conserves electron number; conserves total energy by dissipating electrostatic en­

ergy into thermal energy; and conserves angular momentum by moving the plasma 

column back to the trap axis as the column expands. 

Rotational pumping is the mechanism by which compressional, or "second," 

viscosity drives the plasma towards thermal equilibrium. Driscoll [13] investigated 

the effect of the shear, or "first," viscosity on the transport to thermal equilibrium. 

However, the shear stresses induced by the displacement of the plasma column are 

insignificant compared to the compressional stresses. 

The decrease in the displacement of the column during rotational pumping 

transport damps the m = 1 diocotron mode, which is the E x B drift of the entire 

plasma around the trap axis. At small displacements, the diocotron mode is observed 

to damp exponentially, indicating a linear process. The damping rate is found to 

be proportional to the collisional temperature equipartition rate, which drops pre­

cipitously in the cryogenic, strongly magnetized regime; surprisingly, the damping 

rate is otherwise independent of the magnetic field strength. The dependence of the 

damping rate on plasma density, length, radius, and confinement voltage has also 

been measured. 

Analysis of the data includes numerically calculating the 3-D plasma shapes 
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from the measured temperature and density profiles. This enables quantitative com­

parison with a new theory by Crooks and O'Neil [7]; close agreement with the theory 

is found for nearly all the measurements. 

However, when the plasma is too hot or too cold, discrepancies appear be­

tween the theory and experiments. At high temperatures, the damping rate increases 

with temperature, whereas the Crooks and O'Neil theory predicts a decrease. This 

is probably because the large thermal spread in kinetic energies gives rise to electron 

orbits which are not well modeled by the theory. At low temperatures, a possible res­

onant particle enhancement to the damping rate is not observed, presumably because 

the high collisionality of the plasma destroys bounce-rotation resonances. However, 

supplemental measurements of the heating of a nearly collisionless plasma indicate 

that the resonant particle theory may be valid in the proper parameter regime. 

In the strongly magnetized regime, the steep drop of the collisional tempera­

ture equipartition rate causes a nonlinear instability in the plasma temperature, and 

consequently gives rise to unstable variations in the transport rate. This instability 

can cause bifurcations in the time evolution of the plasma displacement. Further­

more, if a resistive wall destabilizes the diocotron mode, nonlinear oscillations in the 

temperature result in "sawtooth" oscillations of the displacement of the plasma col­

umn. A simple computer model incorporating the unusual temperature dependence 

of the rotational pumping rate quantitatively reproduces this complicated, nonlinear 

"dance" of the diocotron mode [26]. 

The m = 1 diocotron mode can also be damped by applying a "squeeze" 

perturbation; this damping was originally observed by Fine [16]. The squeeze per­

turbation is a static, negative voltage applied to a cylinder which contains one-half 

the length of the plasma. Fine observed exponential damping of the diocotron mode, 

accompanied by an angular-momentum-conserving expansion of the plasma column, 
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much like rotational pumping. 

In Chapter 5, I present my own measurements of squeeze damping in the CV 

trap. For long enough plasmas, I observe the same enhanced damping as Fine, and 

find that the dependence of the damping rate on temperature, density, and plasma 

radius is similar to the dependence observed for rotational pumping. However, nu­

merical calculations of the 3-D density profiles of the experimental plasmas indicate 

that the squeeze perturbation should reduce the azimuthal variation in the plasma 

length. Hence, Crooks and O'Neil's theory predicts that squeeze should reduce the 

damping rate, in contradiction with the observed increase. Furthermore, the mea­

sured rates are not suppressed by strong magnetization as are the rotational pumping 

rates. 

Thus, some other theory is needed to explain squeeze damping. Fine's data 

showed some agreement with a resonant particle, beat-wave damping theory by 

Crawford and O'Neil [5, 6]. However, this theory is also insufficient to explain my 

measurements, as the theory gives the wrong scaling with plasma density. Also, 

many CV plasmas are too collisional for resonant particle theories to be valid. 

Appendix A contains data on plasma heating caused by modulating the 

plasma length by applying azimuthally symmetric, oscillating voltages to the con­

finement cylinders. I find that the most efficient heating occurs when the frequency 

of the applied voltage !mod is near the mean bounce frequency fB· For f mod :::; fB, 

the heating rate strongly increases with !mod and strongly decreases with fB· The 

scalings of the heating rate with !mod and fB show some agreement with a heating 

rate derived from the Crooks and O'Neil resonant particle rotational pumping theory 

[7]. This implies that resonant particles may enhance rotational pumping transport 

in plasmas that are not too collisional. 

Analytical and numerical calulations of the end shapes of off-axis plasma 
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columns are presented in Appendix B. The curvature of the confining equipotentials 

causes the plasma to be longer on one side of the plasma than the other when the 

column is displaced from the trap axis; this length difference is the basis for rota­

tional pumping. The difference in the length can be estimated analytically when the 

plasma is wide or hot. However, perturbation of the space charge fields increases the 

difference in cold, narrow plasmas. The end shapes of these plasmas must be calcu­

lated numerically in order to correctly predicted the rotational pumping transport 

rate. 

In Appendix C, I derive an upper limit to the plasma lifetime imposed by the 

loss of angular momentum by cyclotron radiation. If the plasma is heated to a high 

temperature by azimuthally symmetric voltages, radiation of angular momentum can 

be the primary transport mechanism. 

Appendices D and E contain heuristic derivations of diocotron mode damping 

rates. In Appendix D, I derive the rotational pumping damping rates of the m ;:::: 2 

modes, and find that they are nearly identical to the damping rate of the m = 1 mode. 

In Appendix E, I calculate the damping rates due to shear viscosity. The m ;:::: 2 

modes should damp exponentially, and these shear-induced damping rates can be 

larger than the rotational pumping-induced damping rates in the strongly magnetized 

regime. In contrast, shear viscosity damps them = 1 mode only nonlinearly, and at 

a much slower rate than rotational pumping. 

In Appendix F, I give an alternate derivation of the rotational pumpmg 

transport rate. Whereas the derivation in Chapter 4 uses conservation of energy 

and angular momentum, this derivation considers the forces on the plasma from the 

confining fields. The drifts arising from these forces result in the expansion of the 

plasma column and the damping of the m = 1 diocotron mode. 



Chapter 2 

Background 

2.1 Overview 

This chapter describes the experimental apparatus and the measurements 

and manipulations performed on the plasma. The experiments described in this the­

sis were performed on the CV device at the University of California in San Diego. 

The "C" in CV stands for Cryogenic and the "V" denotes the axial Voltage con­

finement. The CV device is a liquid helium cooled Penning-Malmberg trap. A pure 

electron plasma is contained within the trap by the application of magnetic and 

electric fields. 

Section 2.2 gives a description of the CV apparatus. The Penning-Malmberg 

trap consists of a series of conducting cylinders enclosed in a vacuum chamber. The 

vacuum chamber resides in the bore of a superconducting solenoid, and both are 

enclosed in a liquid-helium filled cryostat. Section 2.3 describes how the electrons 

are injected into the trap, where they are confined axially by negative voltages and 

radially by the magnetic field. 

Section 2.4 describes how the density and potential profiles of the electron 

plasma are determined. The plasma density profile is measured by dumping the 

plasma onto collector plates. Azimuthal motions of the plasma are monitored by 

measuring currents induced on electrically isolated "sector probes." A computer code 
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then calculates the 3-D equilibrium density and potential from these measurements 

and the measurement of the plasma temperature. 

Temperature measurements are described in Section 2.5. The temperature 

is determined by measuring the rate at which the electrons escape as the confining 

voltage is slowly lowered. The plasma can cool to temperatures as low as 4.2K 

through cyclotron radiation. Conversely, the plasma can be heated, as described in 

Section 2.6, by modulating the plasma length. 

Sections 2. 7 and 2.8 describe the rapid evolution of the plasma to a long lived 

equilibrium state. Within 10-100 msec, the plasma is in local thermal equilibrium 

along each magnetic field line and the temperature and density are azimuthally 

uniform around the plasma axis. 

Section 2.9 decscibes how the magnetic field is aligned with the Penning­

Malmberg trap. While alignment is not neccesary for good plasma confinement, it 

is neccesary for density and temperature measurements. 

2.2 Description of CV Apparatus 

A schematic of the CV cryostat, magnet, and vacuum vessel is shown in Fig­

ure 2.1. The Penning-Malmberg trap resides in an evacuated brass tube inserted 

into the bore of a superconducting solenoid, which provides a uniform, axial mag­

netic field. Superconducting saddle coils provide perpendicular components to the 

solenoidal field, enabling the field to be aligned with the axis of the trap. The 

solenoid and vacuum vessel are immersed in liquid helium at the bottom of a cryo­

stat. The liquid helium cools the solenoid, vacuum vessel, and trap to 4.2K, which 

serves three purposes. First, it causes the solenoid to be superconducting, allowing 

the generation of fields up to 64 kG. Second, it acts to cryopump the vacuum vessel 

to a pressure estimated to be lower than 10-13 torr [1]. This extremely low pressure 
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Figure 2.1: Schematic of the CV apparatus. The cryostat is filled with liquid 
helium, which cools the magnet, vacuum tube, and trap to 4.2K. 
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effectively eliminates collisions between electrons and neutral atoms, which would 

otherwise cause the loss of electrons from the trap [37]. It also allows the plasma to 

be heated to arbitrarily high temperatures without causing ionization of the back­

ground gas. Finally, the liquid helium provides a 4.2K background temperature to 

which the electrons can cool. 

The Penning-Malmberg trap is shown schematically in Figure 2.2. The elec­

trons are generated through thermionic emission by ohmically heating a filament. 

The filament is a spiral of 0.001 inch diameter thoriated tungsten wire, located such 

that the longitudinal axis of the solenoid runs through the center of the spiral. Be­

cause of the thinness of the wire and the strength of the magnetic field, the I x B 

force would destroy the filament if it was located inside the solenoid. Instead, the 

filament is located in the fringing fields outside the bore of the solenoid, where the 

magnetic field strength is a factor of 20 less than its value in the bore. 

The trap consists of a series of conducting cylinders arranged along the 

solenoidal axis from the filament into the bore of the magnet. The cylinders, also 

called rings, are made of gold-plated OFHC copper and vary in length from 1.27 

cm to 11.43 cm. Each has a inner wall radius of Rw= 1.27 cm and a wall thickness 

of 0.127 cm. The sector probe ring has 2 electrically isolated wall sectors, shown 

schematically in Figure 2.3; these "sector probes" are 0.4318 cm in axial length, and 

60° in azimuthal extent. 

The inject and compress cylinders are located in the low magnetic field region. 

These cylinders are sequentially biased so as to push the electrons which are emitted 

from the filament into the uniform, high field region in the bore of the solenoid. 

Radial confinement of the electrons is provided by the magnetic field, which causes 

the electrons to spiral about the field lines in tight cyclotron orbits. Longitudinal 

confinement is provided by applying negative voltages to the cylinders at either end 
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Figure 2.2: Schematic of the CV Penning-Malmberg trap, showing the confinment 
cylinders and collector plates. The filament, 11, and 12 are in the low magnetic field 
region. The Ri are the collector radii. The sector probe ring is shown in Figure 2.3. 
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of the plasma. The applied voltages draw any positive ions that may be present 

out of the plasma, leaving only the negatively charged electrons. The length of the 

trapped plasma depends on the length of the cylinders in which it is confined and 

on the voltages confining it. While the plasma is confined, the sector probes can 

be used to detect or manipulate azimuthal modes in the plasma. The entire trap is 

engineered to be cylindrically symmetric, in order to minimize the loss of electrons. 

At the opposite end of the cylinders from the filament are 5 collector plates 

arranged in series, labeled Pl-P5 in Figure 2.2. Each of the first 4 plates has a 

collimator hole through its center. When the plasma is dumped, the electrons stream 

along the magnetic field lines, passing through the succesively smaller holes until they 

hit the collectors. This provides information about the radial charge distribution of 

the electrons. The effective radius of a collector is the radius of the hole in the plate 

before it. These radii are shown in Figure 2.2 as R1 - R5 . The radial size of the P5 

collector is effectively Rw· 

A shielded copper lead is attached to the outside of each ring and each col­

lector. These leads run out of the vacuum vessel through epoxy feedthroughs, and 

then up and out of the cryostat. Each ring or collector can thus be attached to a 

power supply, amplifier, or ground, in order to detect or transmit voltages. The lead 

from the last collector, which is used in measuring the plasma temperature, con­

nects to a low-noise amplifier which is located inside the crysotat. Its temperature 

is maintained at around lOOK. 

2.3 Operation of the CV Apparatus 

The CV apparatus is operated in an inject, manipulate, dump cycle. A 

plasma is captured, subject to various voltages applied to the trap walls, non­

destructively measured while it evolves, and then destructively measured by dumping 



14 

it onto the collector plates. The response of the plasma to a change in an experi­

mental parameter is measured over many cycles, or "shots." Measurements of the 

plasma density and temperature are shot-to-shot repeatable to within about 1 %. 

For nearly all of the experiments described in this thesis, the plasma was 

confined in 3 grounded cylinders of total length Le = 4.953 cm. The confining 

voltage, Vc, ranged from -lOOV to -250V, depending on the space charge potential 

and temperature of the plasma being confined. These values of Le and Vc give a 

typical plasma length of LP '"" 3.5 cm. Longer or shorter plasmas can be captured by 

changing the confinement region and/or the confining voltage, giving 2 cm < Lp < 

10 cm. 

The injection of the electrons into the trap begins by biasing the center of 

the filament spiral to VI,, while a voltage V1 is placed across the filament to make the 

center is more negative than the edge. Typically, V1 = -1.5 V and -10 V < Vb < -20 V. 

The inject and compress rings are then grounded, while the dump ring is biased to 

Vc. Electrons boil off of the filament and stream into the grounded cylinders. The 

electrons are allowed to fill the trap for several milliseconds. The voltage on the 

inject ring is then ramped to Vc over a millisecond, trapping the electrons between 

the inject and dump rings. The compress ring voltage is then likewise ramped over a 

few milliseconds, compressing the plasma into the grounded confinement region. This 

two stage injection process is required to push the electrons through the "magnetic 

mirror" formed by the fringing fields at the end of the solenoid. It also allows more 

electrons to be captured than if the voltages on the inject and compress rings were 

all ramped to Vc at the same time. 

Using this injection process, a pure electron plasma column is created along 

the axis of the trap. The trapped plasma typically has an initial density 109 < n < 

1010 cm-3 and temperature T '"" 1 eV; the magnetic field is typically B '"" 40 kG. 
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The column is initially very narrow; pushing the plasma from the low field region 

near the :filament into the high field region compresses the plasma radius, RP, to less 

than 10% of Rw. 

The electrons in the plasma execute tight cyclotron orbits around magnetic 

field lines, bounce back and forth along the field lines, and E x B drift across the 

field lines. The cyclotron frequency, We = eB /mec, is typically 1012 Hz, and is much 

greater than any other frequency. The mean bounce frequency, f B v /2Lp, defined 

as the bounce frequency of an electron moving at the thermal velocity v = JkT /me, 

is typically 4 x 105 to 3 x 107 Hz. The E x B rotation frequency, f E ~ nee/ B, is 

the rate at which the plasma rotates about its own axis due to its self electric field; 

it typically ranges from 5 x 105 to 3 x 106 Hz. 

Once the plasma is trapped, it can be manipulated to set up a desired initial 

condition. One common manipulation is the creation of an m = 1 diocotron mode, 

which is shown schematically in Figure 2.3. This mode is the E x B orbit of the 

entire plasma column around the axis of the trap due to the electric field of its image 

charges in the conducting walls. The frequency of this mode, fd ~ fE(Rp/Rw) 2
, is 

typically between 5 x 103 Hz and 3 x 104 Hz. 

The m = 1 diocotron mode is easily created by biasing a sector probe for 

a time equal to about 1/2 an orbit period. This causes the plasma to E x B drift 

away from the trap axis. Once created, the mode can be monitored by measuring the 

induced charge on the other sector probe. It is observed to be a very stable mode, 

lasting for many thousands of orbits without a change in amplitude [16]. Them= 1 

diocotron mode can also be manipulated with feedback techniques. The received 

signal on one sector probe is phase shifted, amplified, and then fed back to the other 

sector probe. Positive feedback grows the mode, and negative feedback damps it. 

After the plasma has been held for the desired amount of time, the plasma 
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Figure 2.3: Schematic of the m = 1 diocotron mode and sector probe cylinder. 
The mode is detected through the image charge current on the electrically isolated 
sectors. 

is dumped by ramping the dump ring voltage to +10 V. The shield cylinder acts 

to minimize the charge induced on the collectors by the ramping of the dump ring 

voltage. The electrons stream out and hit the collection plates, which are typically 

biased to +90V. By measuring the voltage on each collector, the amount of charge 

dumped on each can be determined if their capacitances are known. This provides 

information about the plasma radial charge distribution or temperature, depending 

on the speed at which the dump ring voltage is ramped. 

2.4 Density Measurements 

Using the sector probe and charge collector measurements, the full 3 dimen-

sional density and potential profiles of the plasma, n(r,O,z) and </>(r,O,z), can be 
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determined assuming that the only azimuthal perturbation of the plasma density is 

the displacement of a circular plasma column from the trap axis. This condition 

is easily satisfied if the self rotation of the column has had sufficient time to shear 

apart any azimuthal structure [29, 30], and if the amplitude of them= 1 diocotron 

mode is small compared to Rw· The center of the trap is used as the origin of the 

cylindrical coordinate system ( r, (), z). 

2.4.1 Sector Probe Measurements 

The displacement, D, of the plasma column from the trap axis is determined 

by measuring the charge induced on a sector probe by the m = 1 diocotron mode. 

For small displacements of the plasma column, Fine [18] has shown that the plasma 

is nearly circular in cross section. The rapid motion of the electrons along the field 

lines also ensures that the density is nearly uniform along the field lines. The image 

charges which the plasma induces are thus nearly the same as those induced by a finite 

length line charge of uniform "line density" (charge per unit length). Kapetanakos 

and Trivelpiece [33] calculated the current induced on a sector probe located at the 

middle of such a plasma. If the plasma is orbiting with frequency wd = 2?r fd at a 

displacement D about the trap axis, the current is can be written as 

. 2NLewdLs ~ . (nf:!..()) . ( () ) 
Zs = 7f ~ sin -

2
- sm nwdt - s X 

[(}l_)n _ 4 (Rw) f Jn(jn~f.;; sinh(~nkfJt) exp (-ink Lp )] · (2.l) 
Rw Ls k=l (Jnk) ln+l (Jnk) Rw 

Here NL is the line density of the plasma, Ls is the axial length of the sector probe, 

f:l() is the angular displacement of the sector probe, ()s is the angular position of the 

sector probe center, and ink is the kth zero of the Jn Bessel function. The first term 

in the square brackets is the expression for an infinite length plasma. The second 

term is the correction due to finite length, which goes to zero as Lp -+ oo. In the 

experiments descibed in this thesis, the finite length correction was typically under 
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10%. [Note that the right hand side of Eq.22 in Ref.[33] should be multiplied by 2, 

as noted by Fine [16]. Also, the (R/a) term in front of the second summation should 

be a/d.] 

The voltage measured by the the sector probe amplifier is Vs = isZ, where Z 

is the impedance between the sector probe circuit and ground. The capacitance of 

the measurement circuit, C, is approximately 400 pF, which is mainly in the coaxial 

cable running out of the cryostat. The circuit resistance, R, is 10 Mn. Because 

R ~ 1/wdC, the impedance is mostly capacitive, i.e. JZI ~ 1/wdC, and Vs is 

independent of the diocotron mode frequency Wd. The voltage is also phase-shifted 

relative to the induced current; i.e. the sin( nwdt - Bs) terms in Equation 2.1 become 

- cos( nwdt - () s). This signal can be sent to a spectrum analyzer, which isolates the 

different harmonics. Note that J1(jnkD/Rw) ex: D/Rw for D ~ Rw. Thus, Dis 

· proportional to the fundamental component of the spectrum, and D can be deduced 

if NL is known. 

2.4.2 Radial Density Profile Measurements 

Ramping the voltage on the dump ring quickly (1 µsec) causes all the elec­

trons to hit the collectors on a time scale much faster than the RC time of the 

amplifiers connected to them, which causes a voltage step easily measured by the ca-

pacitively coupled amplifiers. The charge collected on the ith collector is an integral 

of n ( r, (), z) over the area of the collector and over the axial length of the plasma: 

Qi= -e JRi rdr j d() j dz n(r, B, z), 
R,_1 

i = 1,5 (2.2) 

where Riis the outer radius of the ith collector, and !lo= 0. The z-integrated charge 

density averaged over the collector,% is obtained by dividing the Qi by the area of 

the collector: 

qi= (R2 R2 ) ' 
7r i - i-1 

(2.3) 
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Figure 2.4: Measured qi and the nz(r) profile fit to them. The rectangles show the 
average nz on the Pl and P2 collectors. 

while the total number of electrons, N, is the sum of the number on each of the 5 

collectors: 
1 5 

N=-l:Qi 
-e i=l 

(2.4) 

If the plasma is azimuthally symmetric and is on axis, the qi provide a crude approx-

imation to the plasma's z-integrated radial density profile, nz, i.e. 

J qi 
nz(r) = dz n(r, z):::::::: -, 

-e 
(2.5) 

Figure 2.4 shows a typical measurement of nz(r). The histogram shows the 

values of q1 and q2 • This plasma column was so narrow that q3 was very small, 

and q4 and q5 were zero. In order to obtain a more useful radial profile, the charge 
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measurements from the five collectors were often fit to a density profile curve of the 

form 

(2.6) 

where the "fit radius" Rfit and the "steepness factor", p, were the fitting parameters. 

The central density was normalized to the measured total charge by 

N 
nz(O) = 7r R}itf(l + 2/p)' (2.7) 

where f is the gamma function. [Note that if p-+ oo, nz(r) becomes a square profile 

and f(l + 2/p) = l.] This profile was chosen because it resembles the density pro-

files measured with better density profile diagnostics on other pure electron plasma 

devices [16], and because the 2 free parameters allowed a range of plasma sizes and 

shapes. The dashed curve in Figure 2.4 is the profile fit to the qi. Unless otherwise 

noted, the data in this thesis was analyzed using these fit profiles. 

Towards the end of the time period in which these experiments were per-

formed, I developed an improved method of measuring density profiles. This method 

requires many shots to obtain one density profile, relying on the reproducibility of 

the plasma. At the end of a confinement period, the plasma is displaced from the 

trap axis. The displacement D of the column is measured over about 10 msec. The 

plasma is then dumped while still off axis. The cylindrical symmetry of the trap 

ensures that the charge dumped on each collector is independent of the phase of the 

m = 1 diocotron mode at the time of dump. By displacing the electron column a 

different amount on each shot, the dependence of q1 on D is obtained, providing 

many data points of information about the density profile. However, the radius of 

the central collector is too large compared to plasma radius to obtain good resolution 

of nz( r ). In order to obtain better resolution this data has to be deconvoluted. 

The deconvolution method used was basically a matrix inversion. The mea-

sured data provides q1 (D), the charge dumped onto the Pl collector as a function of 
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the column displacment. This data was fit with a cubic spline that was smoothed by 

minimizing the second derivatives of q1(D). The cubic spline was then interpolated 

to obtain a smoothed set of q1 at evenly spaced displacements. I denote this data 

set by the vector qsm (Di), where the Di = ill (for i=O to N), are N + 1 displacements 

spaced fl apart. The true, z-integrated density profile nz(r) is then written as the 

solution of the matrix equation 

N 

qsm(Di) = -e L Wijnz(rj) (2.8) 
j=O 

where rj = jf:l and Wij = Aij - A,j-l is the convolution matrix. The Aij terms are 

given by 

and 

{ 

7rRf 
7rr~ 

J 

0 

if Ri +Di< ri 
if Ri - Di> ri 
if Di - Ri > ri 

Aij Ri arccos(Xij/ Ri) + rj arccos((Di - Xii)/ri) - DiJ Ri - Xi~ 

if lri - Dil < Ri, 

(2.9) 

where Xij = (Rf - rJ + Dl)/2Di. Equation 2.8 can be solved by directly inverting 

matrix Wij, but any noise in the data will be amplified, resulting in a very noisy 

answer for nz(ri)· Instead, a method due to Phillips [51] and Twomey [62] was 

used to introduce smoothing into the deconvoluted profile. In addition, an iterative 

method due to Subrahmanya [61] was used to restrict the answer for nz(ri) to positive 

densities. 

Figure 2.5 shows the density profile obtained with this method for the plasma 

of Figure 2.4. The data points are q1(D); the error bars are the result of averaging 

over 3 shots for each value of D. The solid curve is the deconvoluted profile obtained 

using a rj interval of fl = 0.0065 cm, less than 1/lOth the diameter of the Pl 

collector. Note that the fit profile in Figure 2.4 is fairly close to the deconvoluted 
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Figure 2.5: Measured q1(D) and the deconvoluted nz(r). The rj interval for the 
deconvoluted profile is 0.0065 cm, less than 1/lOth the diameter of the Pl collector 
shown by the horizontal bar. 

profile in Figure 2.5, demonstrating the reasonableness of the functional form of the 

fit profile. 

2.4.3 3D Density and Potential Profiles 

The CV device has no diagnostics which directly measure the electron density 

distribution along z. The axial distribution is numerically calculated, given nz(r) 

and D, assuming that the electrons are in thermal equilibrium along each magnetic 

field line. This is accomplished with a three-dimensional Poisson-Boltzmann code 

which calculates the potential </> by solving Poisson's equation on a Cartesian grid, 

\72 <f>(x, y, z) = 47re n(x, y, z). (2.10) 
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The grid size is typically 125 x 125 x 200, with r 2 = x2 + y 2
• The code then iteratively 

solves for the density assuming a Boltzmann distribution of electrons in z, i.e. 

( ) ( ) (
e</J(x, y, z)) 

n x, y, z = n 0 x, y exp kT ( x, y) , (2.11) 

where n0 (x, y) is determined from nz(r). The iterative calculation will not converge if 

the De bye length, >..v = J kT / 47rne2 , is smaller than the grid spacing. In that case, I 

find the lowest temperature for which the calculation converges and use the solution 

as an approximation to n(x,y,z) and <f>(x,y,z). Using n(x,y,z) and <f>(x,y,z), I 

define the mean plasma length by 

LP= f dxdydz n(x, y, z) [nz(x, y)/n(x, y, z = O)] 
J dxdydz n(x, y, z) ' 

and the average line density by 

N 
NL=­

L" p 

2.5 Temperature Measurements 

(2.12) 

(2.13) 

The CV apparatus can create plasmas with a wide range of temperatures, 

from 0.0005 eV to 200 eV. The extremely low temperatures are accessible because 

the electrons cool by cyclotron radiation. A single electron in free space radiates 

energy with an e-folding time of Trad = 387 /[B(kG)] 2 sec [1]; at 40kG, Trad= 0.23 

sec. Electrons in CV radiate energy at a slightly slower rate, presumably because the 

conducting cylinders act somewhat like a waveguide; the experimentally measured 

value of Trad is 0.29 sec at B = 40 kG [1]. The plasma can cool to arbitrarily low 

temperatures without recombining because there are no ions present. CV plasmas 

can also be heated to hundreds of eV without ionizing background gas because the 

cryopumping by the liquid helium produces an extemely good vacuum. 

The temperature of the plasma parallel to the magnetic field, 711, is measured 

by ramping the dump cylinder voltage to ground slowly compared to the mean elec-
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tron axial bounce frequency, fB· As the dump ring voltage is ramped, the potential 

barrier which confines the electrons is decreased. This barrier is weakest on the axis 

of the trap. The more energetic electrons escape before those with less energy, and 

are collected on Pl. The voltage on Pl and the dump ring voltage are simultane­

ously digitized at lMHz. The parallel temperature is determined by measuring the 

number of electrons which escape as a function of the dump ring voltage .. Beck [1] 

calculated the rate at which electrons escape assuming that their parallel velocity 

distribution is a Maxwellian and the escaping electrons come from the tail of the 

Maxwellian. This rate is given by 

1 d 1.05 
- e2 dVc, log( Q1) ~ k111 . (2.14) 

The right hand side of this equation is an approximation to an asymptotic expansion. 

The first term in this expansion is 1 / k111 1 and the second term is at most 10% of the 

first term. Hence, the asymptotic expansion can be approximated to within 5% by 

1.05/ k111· 

Typically, the measurements of 4 shots are averaged; temperature measure-

ments are repeatable to within 10%. The theory and operation of the temperature 

measurement system are well described by Beck and Eggleston [14]. Radial energy 

transport is discussed in Section 2. 7. 

Only the parallel temperature, 111 1 can be measured on the CV apparatus. 

While the perpendicular temperature, TJ., is not measureable, the two temperatures 

equilibrate through electron-electron collisions. As long as the equilibration rate 

between the two temperatures, v.L
11

, is larger than the rate of change of either Tl. or 

111i the two temperatures will be near a common value, T, i.e. T J. ~ 111 = T. This 

was true for nearly all of the experiments described in this thesis. 
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Low Temperature Considerations 

The lowest temperature measureable with this method is limited by the min­

imum number of escaping electrons which can be measured, which is limited by the 

noise in the measurement circuit. This noise is primarily due to microphonics in the 

leads from the central collector Pl to the first stage amplifier. For this reason, the 

first stage amplifier is located inside the cryostat, in order to shorten these leads. 

Even so, to measure temperatures lower than 0.05 eV on a typical CV plasma 

requires additional analysis of the collected electron signal. In order to do this, the 

digitized Q1 and dump ring voltage signals are fed into a program which models the 

escape of electrons from over the potential barrier, including the effects of the change 

in space charge potential and the loss of electrons with velocities which are not in 

the tail of the Maxwellian distribution. This process is more time consuming than 

the normal measurement process, but it enables temperature measurements down to 

0.003 eV. 

2.6 Plasma Heating 

The thermal energy of the plasma can increase in a variety of ways. The most 

ubiquitous method is Joule heating from the radial transport of electrons through 

the plasma's radial electric field. Because the electrostatic energy of the plasma is 

much larger than the thermal energy, a small amount of radial transport can cause 

significant heating. 

A number of the experiments described in this thesis required that the plasma 

be actively heated. A simple way to accomplish this is to modulate the length of 

the plasma by applying a sinusoidally varying voltage to one of the rings near the 

end of the confinement region. (The 14 cylinder in Figure 2.2 was typically used.) 

If the modulation frequency f mod is small compared to the mean electron bounce 
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frequency, fB, but large compared to the anisotropic temperature equilibration rate, 

v l.
11

, then the parallel temperature varies as if the the plasma were a 1-D ideal gas, 

i.e. 1l1L; remains a constant. Electron-electron collisions attempt to equilibrate T11 

with Tl., causing the modulation 111 to be out of phase with the applied voltage. 

This results in net work being done on the plasma, raising both Tl. and 111, as shown 

by Beck [1]. 

I have found experimentally that if fmod > 0.3fB, the heating rate is as much 

as 2 orders of magnitude greater than if the plasma length is modulated adiabatically, 

i.e. fmod ~ fB· Much smaller applied voltages can then be used to heat the plasma, 

giving smaller perturbations to the plasma length and density. This non-adiabatic 

heating is discussed in Appendix A. 

For many experiments, a stable plasma temperature is desired. This can 

be achieved if the cooling of the plasma through cyclotron radiation is balanced by 

Joule heating and active heating. This requires that vl. 11 ~ 1/Trad, so that Tl. and T11 

equilibrate much faster than Tl. decreases through radiation or 111 increases by the 

heating processes described here. This condition holds for most of the experiments I 

describe in this thesis. By adjusting the amplitude of the applied voltage, the plasma 

temperature can be set to any desired value. 

2. 7 Energy Transport 

The major shortcoming of the temperature diagnostic on CV is that it only 

measures the temperature at the center of the plasma. Beck [1] showed that over 

90% of the electrons that are measured originate within 4.Av of the plasma axis. At 

a typical temperature of T = 0.1 eV and density of n = 5 x 109 cm-3
, the Debye 

length is .Av = 0.0033 cm, and 4.Av/ Rp ~ 0.05 for a typical plasma radius of Rp/ Rw = 

0.05. To analyze my data, I assume that the plasma has uniform temperature; e.g. 
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to calculate the distribution of electrons along the field lines using Equation 2.10 

and Equation 2.11, or to compare to rotational pumping theory. It is therefore 

worthwhile to examine the validity of this assumption in relation to the cross-field 

transport timescales of interest. 

The bounce motion of the electrons phase mixes any temperature variations 

along the field lines on a time scale of fB -l. Collisions between the electrons then 

equilibrate Tl. and 711 and bring the plasma to local thermal equilibrium along each 

field line on a time scale of v~1~. Previous experimental [2, 31] and theoretical [22, 27] 

work has shown that the anisotropic temperature equilibration rate, v .1. 11 , can be 

written as 

SJ?f 2-
v.1.11 = 15 nb v I(rc/b), (2.15) 

where b - e2 /T is the distance of closest approach, and re = v /We is the mean 

cyclotron radius. For re ~ b, the function I(re/b) is the Coulomb logarithim, i.e. 

I_ ln(re/b). Here, re is the maximum and bis the minimum impact parameter for an 

electron-electron collision. For re~ b, the electrons cannot get close enough together 

to exchange perpendicular and parallel energy, causing I to decrease exponentially 

with decreasing re/b. Thus, at a given density and magnetic field, v.1. 11 is a maximum 

for re ~ b. For the experiments described in this thesis, 100 < v .Lii < 6 x 105 sec-1
• 

Thus, the plasma reaches local thermal equilibrium in z in less than 10 msec. 

Temperature equilibration is presumably also rapid in the (} direction, due to 

shears in the E x B rotation profile [29, 30]. Consider electrons which are originally 

at the same r and B. Over a time To they will diffuse in radius a distance br, and 

so will also spread out over an angle b(} ~ 27rTo(ofE/or)br. Setting bB = 27r and 

br2 = Drro, where Dr is the radial diffusion coefficient given below in Equation 2.17, 

gives the equilibration time in (} as 

(2.16) 
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For a typical CV plasma, Te < 10 msec, similar to the equilibration time in z. 

At the present time there is no direct experimental measurements of radial 

energy transport in pure electron plasma. A lower bound can be estimated from 

collisional transport theory, which gives a radial diffusion coefficient of 

(2.17) 

Here, re is the radial step size during a collision and the electron-electron collision 

rate is given by 

(2.18) 

This is nearly the same expression as that for 11 J.I/ when re > b, except that Av 

replaces re in the Coulomb logarithim. The reason for this substitution is that, as 

shown by O'Neil [45, 46), collisions with impact parameters greater than re but less 

than An can cause diffusion without equilibrating T11 and T 1-. Defining the radial 

energy transport time by Tr ~ R;/ Dr. gives 9 sec < Tr < 52 sec for a typical CV 

plasma at temperatures from 0.001 eV to 10 eV and B = 40 kG. 

The arguments given above show that the plasma temperature should be 

relatively uniform in the z and 0 directions. The theoretical estimate of radial energy 

transport, however, does not rule out radial temperature gradients, especially for 

plasmas which are wider or denser than typical plasma I have considered here ( n = 

5 x 109 cm-3 and Rp/ Rw = 0.05). Thus, the assumption that the temperature is 

uniform is not entirely valid and may be responsible for some disagreements between 

my data and the rotational pumping theory. 

2.8 Symmetrization of the Density Profile 

In measuring the plasma density profile I assume that it is symmetric about 

its own axis. This assumption is valid, as previous researchers have shown that the 
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symmetrization rate is much faster than the transport rates which I discuss in this 

thesis. 

Huang [29, 30] studied the relaxation of turbulence in the E x B flow in the 

plasma. He found that density flucuations in () shear out within 100 E x B rotations 

of the plasma column. Vortices in the E x B flow which are strong enough to resist 

the shear may last for 10-100 times longer, but for a typical CV plasma this time 

scale is still less than 10 msec. 

Coherent modes may last much longer than the random turbulence; e.g. 

diocotron modes may last for many plasma rotations. However, the high mode 

number (m 2: 2) modes damp through a spatial Landau-type mechanism [4, 8, 52]. 

Mitchell [39] also showed that these modes can decay into lower m modes through 

"beat-wave" damping. For a typical CV plasma, them 2: 2 modes are estimated to 

damp in less than 100 msec. Them = 1 diocotron mode cannot Landau damp or 

decay into a lower m mode; however, for small amplitudes (D ~ Rw) the plasma 

should be essentially symmetric around its own axis, as shown by Fine [18]. 

2.9 Alignment of the Magnetic Field 

Proper alignment of the magnetic field with the conducting cylinders is cru­

cial in running the CV apparatus. It is implicitly assumed in both density and 

temperature measurements and in the calculation of the 3D density and potential 

profiles. 

The standard alignment procedure on Penning-Malmberg traps is due to 

Fine [16], who demonstrated that misalignment between the magnetic field and the 

conducting cylinders can result in increased radial transport. Fine incremented the 

magnetic field angle until he found the value which caused the least radial transport. 

This procedure is not feasible on the CV device, as shown by Figure 2.6. The plot 
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Figure 2.6: Final central density after 30 sec of magnetic tilt. The density decreases 
less than 20% even at a tilt angle of 8 mrad. 

shows the central density of a plasma as a function of the magnetic field tilt angle. 

The magnetic field was held at the tilt angle shown during the 30 second confinement 

period, but was properly aligned during the injection and dump periods. The change 

in central density was at most about 20% for the largest tilt angles, which limits 

the precision of the magnetic field alignment to several milliradians. This lack of 

transport from radial tilt is qualitatively consistent with Fine's results, who measured 

a transport rate that scaled as 

(2.19) 

where q > 2. This scaling predicts very slow transport due to magnetic tilt in the 

CV apparatus, which has magnetic fields 100 times greater than Fine's EV device, 
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Figure 2. 7: The number of electrons dumped on the central collector, Pl, varies 
about 6% with the phase of the diocotron mode, indicating the magnetic field is not 
aligned with the collectors. 

and plasma lengths several times shorter. 

While the slowness of the transport caused by magnetic misalignment is 

fortuitous in terms of confining the plasma, it neccesitates a new method of aligning 

the magnetic field. The method which I developed uses the m = 1 diocotron mode 

and the azimuthal symmetry of the Pl collector. The plasma is dumped while the 

diocotron mode is present. If the field is misaligned, the axis of the column's orbit 

will not be the same as the trap's axis of symmetry, and the number of electrons 

dumped on the central collector will depend on the phase of the m = 1 diocotron 

mode, as shown in Figure 2. 7. The magnetic field is aligned by finding the tilt angle 

for which the number of electons dumped on the central collector is independent 
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of phase. The magnetic field can be aligned in this way to within a fraction of a 

milliradian. 



Chapter 3 

Anomalous Transport 

3.1 Overview 

In this chapter, I present measurements on the radial transport of electrons 

in the CV trap due to the inherent asymmetries of the trap. The mean square radius 

of the plasma is constrained by the conservation of its angular momentum; radial 

transport arises because azimuthal asymmetries exert a torque on the plasma. Since 

the form of these asymmetries is not known, radial expansion of the column due to 

inherent asymmetries is refered to as "anomalous" transport. 

I have found that for high enough temperatures, the anomalous transport 

rate in the CV trap decreases with temperature. The dependence on .temperature 

has not previously been observed, and can be quite strong. However, at temperatures 

low enough that the E x B rotation frequency of the plasma, fE, is larger than the 

mean electron bounce frequency, fB, I find that the transport rate is independent of 

temperature. The transition between these two temperature regimes is observed to 

occur where fB ~ fE· I have also observed that the transport rate increases with 

plasma density, and decreases with magnetic field. The magnetic field dependence in 

the CV trap is stronger than has been observed in other pure electron plasma traps. 

In comparing the CV anomalous transport rates to those in similar devices, 

I find that the value of fE/ fB is a good indicator of the loss time for a wide range of 

33 
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plasma parameters. This is consistent with the constraints placed on the expansion 

of the column by conservation of energy and by adiabatic invariants associated with 

the kinetic energy of the electrons. In order for the plasma to expand, it must 

dissipate electrostatic energy into thermal energy. This requires the breaking of the 

adiabatic invariants, which becomes easier as fE/ fB increases. 

While the observed scalings of the transport rate with plasma parameters are 

consistent with theoretical constraints, the actual mechanism by which the plasma 

expands is unknown. One possible mechanism is single particle resonant transport. 

The data shows some agreement with resonant particle transport theory, but is 

not clean enough to establish resonant particle transport as the primary transport 

process. 

3.2 Angular Momentum and Torques 

Pure electron plasmas have exceptional confinement properties compared to 

neutral plasmas. The single sign of charge allows the use of static voltages to confine 

the plasma along the magnetic field, eliminating the need for curvature in the mag­

netic field lines. As long as the voltage barrier is high enough, axial confinement is 

energetically ensured, and the electrons can only escape radially across the magnetic 

field. 

The radial expansion of the plasma is constrained by the conservation of the 

angular momentum of the electrons and fields [43]; the plasma can expand radially 

only if external torques act to reduce the total angular momentum, Po. This can be 

seen in the expression for the total canonical angular momentum of the pure electron 

plasma: 

Po= j d3r n(mev - ~A)· rO = j d3r nme(ver - We r; ), (3.1) 

where the vector potential for the uniform, axial magnetic field is A = ~ BrO. For 



35 

a CV plasma, the inertial part of angular momentum is usually a factor of ,.._, 10-4 

smaller than electromagnetic part. Equation 3.1 can then be written as 

(3.2) 

where (r2
) is the mean square radius of the plasma. The R! term is due to the 

positive image charges on the conducting walls; it is a constant as long as N is 

conserved. 

For constant N, the mean square radius of the plasma is a constant in the 

absence of external torques which change Po. Note that this is not true in a neutral 

plasma, because the electromagnetic part of each particle's angular momentum is 

proportional to its charge, and positive and negative charges are distributed equally. 

Previous work by Malmberg and Driscoll [37] showed that collisions between 

the electrons and a stationary, neutral background gas induce a drag on the plasma 

that increases its mean square radius. They found that the rate of expansion of 

the plasma column is proportional to the neutral pressure and decreases with the 

magnetic field as B-2
• Their measurements are well explained by theory [9]. 

When the neutral pressure is sufficiently low, transport caused by electron­

neutral collisions becomes negligible. The plasma expansion is instead due to some 

anomalous process which is independent of pressure. I use the word "anomalous" 

because the source of the external torques is not known. They are believed to 

be caused, however, by small azimuthal asymmetries in the confining magnetic or 

electric fields. These asymmetries are present in all nonneutral plasma devices, but 

are minimized by careful engineering and the use of non-magnetic materials in the 

construction of the trap. 

The first measurements of anomalous transport in a Penning-Malmberg trap 

were performed by Driscoll and Malmberg [12] on the V' apparatus. They defined the 

"mobility time", Tm, as the time for the central density of the plasma to decrease by 
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1/2. They found that Tm scaled as (Lp/ Bt2 over 5 decades in the parameter Lp/ B. 

Subsequent work on the EV apparatus [11] showed the same scaling with Lp/ B. It 

also demonstrated that field asymmetries play an important role in the transport. By 

carefully minimizing asymmetries in the construction of the EV apparatus, transport 

rates were reduced by a factor of 20 compared to V'. 

Here, I define Tm as the confinement time at which the amount of charge 

dumped on the central collector Pl is 1/2 of its original value. Since the signal 

on Pl averages over a sizeable portion of the density profile, my definition of Tm 

largely ignores Pe conserving radial transport. The mobility time for a given plasma 

is measured by incrementing the confinement time over many shots. The plasma 

temperature is maintained at a constant level over the confinement time through the 

use of the non-adiabatic heating technique described in Section 2.6. 

3.3 Temperature and Magnetic Field Dependence 

3.3.1 Increase in Tm at High Temperatures 

I find that the mobility time Tm usually increases with temperature. Fig­

ure 3.1 shows Tm as a function of temperature at 5 different magnetic fields. At 

B = 4 kG, the mobility time increases by 3 orders of magnitude as the temperature 

is increased by a factor of 50, from T = 2 eV to T = 100 eV. As the magnetic field 

increases, Tm increases less strongly with temperature. At B = 64 kG' Tm increases 

only 1 order of magnitude as T increases by a factor of 50. The dashed lines show 

scalings of Tm ex T 2 and Tm ex T 1 for comparison. 

The increase in Tm with temperature is at first counter-intuitive: more ener­

getic electrons are better confined. However, it is consistent with several fundamental 

ideas about radial transport. 

1. The kinetic energy of the electrons increases with temperature, whereas the 

L..._ __________________________________________ -----------
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Figure 3.1: Increase in Tm with temperature at 5 different magnetic fields. The 
dashed lines show T 1 and T 2 scalings for comparison. The dotted line shows the 
upper limit put on Tm by cyclotron radiation. 

strength of the field asymmetries does not. Thus, as the temperature is in­

creased, the field asymmetries presumably make smaller perturbations to the 

orbits of the electrons. Also, high energy electrons are less likely to be trapped 

in any local potential wells created by field asymmetries. 

2. The electron-electron collision rate, Vee, and the collisional temperature equili-

bration rate, v .LJI, both decrease strongly with temperature for the temperature 

range shown in Figure 3.1. Collisional transport mechanisms, such as the rota-

tional pumping discussed in Chapter 4, will be weaker at higher temperatures. 

3. The plasma Debye length, AD, increases with temperature. This may weaken 
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transport from collective effects. However, I do not observe any change in the 

the dependence of Tm on T when >.n becomes comparable to the plasma radius 

Rv· (In Figure 3.1, >.n = Rv at T = 12 eV.) 

The increase in Tm with temperature could conceivably be due to some non­

linear interaction between the plasma and the sinusoidal voltages used to heat it. 

Paul traps, for instance, use RF voltages to confine a plasma without a magnetic 

field. I do not believe that this is the case for several reasons. First, the frequency 

and amplitude of the applied voltage can be varied while maintaining the same 

plasma temperature. The value of Tm is observed to depend on the temperature, not 

the amplitude of the applied voltage. Second, for the first 7 points in Figure 3.1 at 

B = 4 kG, Tm is less than the radiative cooling time Trad· The temperature of those 

plasmas were set by applying a voltage burst at the beginning of the confinement 

time; continual active heating was not required to increase Tm. Finally, the decrease 

in radial transport with temperature has recently also been observed on a pure Mg+ 

ion plasma [58). The ion plasma was cooled by ion-neutral collisions and heated by 

driving the cyclotron motion of the ions. The common factor between these two 

experiments is the increase in Tm with temperature. 

The dotted line in Figure 3.1 is an estimate of the mobility time Tm if cy­

clotron radiation is the only source of angular momentum loss. In Appendix C, 

I show that cyclotron radiation lowers the angular momentum as well as the per­

pendicular energy of the electrons. However, actively heating the plasma increases 

only its parallel energy, not its angular momentum, because the applied voltage is 

azimuthally symmetric. As electron-electron collisions equilibrate TJ. and 71,, they 

must exchange angular momentum between the electrons and the fields in order to 

conserve Po. Therefore, the loss of angular momentum through cyclotron radiation 

must be accompanied by a radial expansion of the column. This puts an upper limit 
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on Tm of 

(3.3) 

where re is the mean electron cyclotron radius. The transport due to cyclotron 

radiation is independent of magnetic field, since Trad and r c are both proportional to 

B- 2
, and is normally much slower than the transport from asymmetries. However, 

radiation transport is important at the highest temperatures in Figure 3.1, as is 

evident by the decrease in Tm at B = 4 kG and T = 220 eV. 

3.3.2 Increase in Tm with Magnetic Field 

Figure 3.2 shows the data from Figure 3.1 plotted against magnetic field at 5 

different temperatures. The dotted lines are simply to guide the eye. The dependence 

of Tm on magnetic field is comparable to Tm ex: B 4
, as shown by the dashed line. This 

is a much stronger dependence than previously observed, and may indicate that the 

transport processes in this parameter regime are qualitatively different than those in 

the EV and V' apparatuses. 

The weakening of the dependence of Tm on T with increasing magnetic field 

is responsible for the rightward bend in the data in Figure 3.2. The re_ason for this 

weakening is not known. It may be that different transport processes are dominant 

at different magnetic fields, or it may be a systematic error. As the temperature and 

magnetic field are varied, it is not possible to keep the plasma length and density 

profile exactly constant. Also, Trad decreases with magnetic field, which requires that 

stronger active heating be used. Since the radial energy transport rate presumably 

also decreases with magnetic field, radial temperature gradients are more likely to 

exist at higher magnetic fields. If the center of the plasma is heated more than the 

edge, the measured temperature may be larger than the average plasma temperature. 
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3.3.3 Temperature Independence of Tm at Low Tempera­
tures 

At sufficiently low temperatures, Tm is observed to be indepedent of temper-

ature. Figure 3.3 shows Tm as a function of temperature for a short, high density 

plasma and for a plasma twice as long and one quarter the density. The magnetic 

field is 40 kG in both cases. The mobility time for the 2 plasmas increases approx-

imately linearly with temperature for T > 1 eV, but is independent of T at lower 

temperatures. 

I have observed this transistion between the temperature dependent and tern-
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. perature independent regimes in 8 different measurements of Tm as a function of 

temperature, at densities from 5.5 x 108 to 1.4 x 1010 cm-3 and temperatures from 

0.052 to 2.8 eV. The temperature at which the transistion occurs is observed to 

depend on density, magnetic field, and plasma length in such a way that Tm is al­

ways independent of temperature when fE > fB· For instance, in Figure 3.3, the 

transition occurs at fE/ fB ::=::::: 0.9 for the higher density plasma and at fE/ fB ::=::::: 0.4 

for the lower density plasma. In Figure 3.1, fE is greater than fB only for the first 

two points at B = 4 kG. This presumably explains why only the B = 4 kG data 

exhibits a transition to the temperature independent regime, although, in general, 

the transition is observed at values of fE/ fB as small as 0.3. The reason for the tran-

sition is not known; it may mark the boundary between different parameter regimes 
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with different transport processes. 

3.4 Density Dependence 

While Tm usually increases with temperature and magnetic field, it decreases 

with density, as shown in Figure 3.4. The mobility time is shown as a function of 

density at 4 different temperatures. At the highest temperature of 2.84 eV, Tm de-

creases by 3 orders of magnitude, from 1500 sec to 1.8 sec, as the density is increased 

by a factor of 5. The dependence of Tm on density is weaker at lower temperatures; 

at T = 0.1 eV, increasing the density from 1.1 x 109 cm-3 to 2.3 x 109 cm-3 only de-
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creases Tm by a factor of 2. The dashed lines in Figure 3.4 show scalings of Tm oc n-4 

and Tm oc n-1 for comparison. The dotted lines are simply to guide the eye. 

Unlike the increase in Tm with temperature, the decrease in Tm with density is 

intuitively expected; it is harder to confine many electrons than a few. It is consistent 

with several fundamental plasma physics concepts: 

1. The plasma's self electric field is proportional to its density. A higher density 

means faster E x B drifts and a larger radial force on each electron. 

2. The electron-electron collision rate, Vee, and the collisional temperature equi­

libration rate, v_Lll, both increase linearly with density. Collisional transport 

mechanisms should be stronger at higher densities. 

3. The plasma Debye length decreases with density. This may strengthen trans­

port from collective effects. 

The minimum temperature at each density is limited by the Joule heating 

caused by the radial expansion. The higher the plasma density, the faster it expands 

and the more electrostatic energy is released as it does. The points with error bars 

in Figure 3.4 were not accessible experimentally and have been extrapolated from 

values of Tm measured at higher or lower temperatures. The large error bars show 

the factor of 2 uncertainty in the values of Tm at these points. 

3.5 Comparison with Previous Experiments 

Very long mobility times are predicted for CV plasmas if the EV and V' 

scalings with neutral gas pressure and Lp/ B are extrapolated to the CV parameter 

regime. The vacuum in CV is estimated to be superior to that in the EV and V' 

machines, due to the cryopumping produced by the liquid helium. Furthermore, the 

parameter Lp/ Bis orders of magnitude smaller in CV than in EV and V'. However, 
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Figure 3.5: ·CV data plotted gainst Lp/ B. The wide spread in Tm at each Lp/ B is 
due to variations in temperature and magnetic field. Each symbol corresponds to a 
different data set in which Tm was measured as a function of temperature. The solid 
lines show the (Lp/ B)- 2 scalings obtained on the EV and V' devices. 

the mobility times in CV are comparable to EV and V', due to the higher densities 

and colder temperatures in CV. 

It is instructive to compare my measurements of Tm with the measurements 

made by Driscoll and Malmberg on the V' and EV apparatuses. Figure 3.5 shows all 

the data from Figures 3.1 - 3.4 plotted against the parameter Lp/ B. The solid lines 

show the (Lp/ B)-2 scalings of Tm obtained on EV and V'. The large vertical spread 

at each value of Lp/ B reflects the variation of Tm with temperature and density. In 

contrast, the EV and V' plasmas all had the same density, n ,...., 107 cm-3 , and the 

same temperature, T,...., 1 eV. 



45 

0 

,,-.... 102 
() 
(]) 
r:n ....._... 

s 10 1 

l-
+ + 

10° <> 

<> <> 

Figure 3.6: The CV data coincides with the EV and V' data when plotted against 
fE/ fB· Some data sets show Tm to be independent of fE/ fB; this is due to the 
temperature independent transport shown in Figure 3.3. 

In order to compare the CV data to the EV, V' data, I need a dimensionless 

parameter which is proportional to Lp/ B and also increases with n and decreases 

with T. The ratio !E/ !B satisfies these conditions, and is also an important pa-

rameter in resonant particle transport theory. Figure 3.6 shows all of the data in 

Figure 3.5 plotted against fE/ fB· The CV data points fall largely between the two 

solid lines which show the EV and V' scalings. These lines give Tm= 0.76 (JE/ fB)- 2 

for the V' data and Tm= 15.2(JE/fBt2 for the EV data. Now, (JE/fBt 2 is pro­

portional to (Lp/ Bt2 (T /n 2
). While my data exhibits a temperature dependence in 

the scaling of Tm with n and B, I find that Tm ex (Lp/Bt 2(T/n 2 ) is certainly within 

the range of scalings I observe. Therefore, while (JE/ !Bt2 may not be the proper 
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scaling in all parameter regimes, it does have the advantage of being a single dimen­

sionless parameter which can be used to roughly predict the effectiveness of radial 

confinement over a broad range of parameter regimes. Recently, measurements of Tm 

on two new machines at UCSD, IV and CAMV, have also exhibited rough (JE/ fBt 2 

scalings which are also close to EV and V'. 

3.6 Comparison with Theory 

3.6.1 Constraints 

The radial expansion of the plasma column is subject to several theoretical 

constraints. One, the non-conservation of angular momentum, is discussed in Sec­

tion 3.2. The total angular momentum of the plasma, Po, must decrease in order for 

the column to expand [43]. 

Another constraint is the limitations of E x B drift dynamics. E x B flows 

are incompressible and conserve the electrostatic energy of the plasma [10], while the 

radial transport studied here is compressible and decreases the electrostatic energy. 

Hence, some mechanism besides E x B drift dynamics must be involved. 

Since the field asymmetries responsible for the transport are presumably 

time-independent, the total energy of the plasma is also conserved, aside from losses 

due to cyclotron radiation. Since the energy of the plasma is divided between only 

two components, electrostatic and thermal, any expansion of the plasma column 

must be accompanied by an increase in the thermal energy. 

Finally, as noted by O'Neil [47], the increase in the thermal energy of the 

plasma is constrained by 2 adiabatic invariants which constrain the kinetic energy 

of each electron. These invariants are 

1. J l.. = mev'i/ B 2
, associated with the cyclotron motion of an electron, and 

2. J11 =§dz mevll' associated with the bounce motion of an electron. 
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In order for the kinetic energy of an electron to increase, one of these adiabatic 

invariants must be broken. 

If the cyclotron and bounce motions of an electron are faster than any other 

plasma motions, only collisions can break the two adiabatic invariants. In the absence 

of collisions, the extremely high cyclotron frequency of the electron, We ,...., 1012 Hz, 

ensures that Jl. remains invariant. However, J11 is not an invariant if the E x B 

rotation frequency exceeds the bounce frequency of the electron or if high frequency 

plasma modes are present. In that case, the parallel kinetic energy of the electron can 

increase, providing a sink for the electrostatic energy released by radial transport. 

The presence of these constraints partially explains the basic features of the 

observed scalings of Tm with plasma parameters and hence with the parameter fE/ fB· 

Increasing the magnetic field or decreasing the density decreases the E x B rotation 

and plasma mode frequencies, which makes J11 an adiabatic invariant for more elec­

trons. Similarly, increasing the temperature or decreasing the plasma length increases 

the mean bounce frequency, which decreases the number of electrons for which J11 is 

not a good adiabatic invariant. Also, bringing the plasma mode and mean bounce 

frequencies closer together increases Landau damping, which suppresses the growth 

of plasma modes. Finally, increasing T and decreasing n decreases the collisional 

temperature equilibration rate, so collisions are less likely to break the adiabatic 

invariants. 

When the E x B rotation frequency fE is larger than the mean bounce fre­

quency fB, the quantity J11 is not an adiabatic invariant for most electrons. In that 

case, increasing T should not inhibit the conversion of electrostatic energy into ther­

mal energy. This is consistent with the observed independence of Tm on T when 

f E > f B· 
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3.6.2 Resonant Particle Transport Theory 

While the arguments made above partially explain the basic parameter scal­

ings observed for anomalous transport, they do not explain the mechanism behind 

the transport. The lack of knowledge of the nature of the field asymmetries causing 

the transport makes estimating transport rates exceedingly difficult. However, the 

anomalous transport observed in Penning-Malmberg traps has long been considered 

to be some sort of resonant particle transport, so it is worthwile to examine the data 

from this perspective. 

Single particle resonant transport theories [55, 56] assume that the field asym­

metries can be reduced to Fourier components like 

8</>p,m(r) = 8</>0 (r) cos(p7rz/ Lp) cos(mO). (3.4) 

The bounce and E x B rotation frequencies of a resonant particle satisfy the condi­

tion mfE = pfB· A particle which satifies the resonance condition continually traces 

out the same orbit. [This is analagous to the safety factor in a tokamak, q, being 

a rational number.] The orbit of such a particle is in phase with the variation in 

8</>. This causes the particle to make large E x B excursions in the radial direction, 

!:::.r, during an orbit. The particle then continually executes this same orbit until 

an electron-electron collision knocks it out of resonance. The transport that results 

from the resonant particles is thus proportional to (!:::.r )2
. In contrast, non-resonant 

particles are not in phase with the field asymmetry, and do not continually trace 

out the same orbit. Hence, the field asymmetry causes these particles to take only 

small, random, radial steps. The increase in Po thus comes predominantly from the 

resonant particles, with collisions knocking particles in and out of resonance. 

Obviously, the amount of transport that occurs is strongly dependent on 

the number of resonant particles. If the spread in particle energy is a Maxwellian, 

the bulk of the particles will have bounce frequencies around fB = v/(2Lp)· If 
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mfE < pfB, the number of resonant particles decreases as T increases. This is 

consistent with the observed increase in Tm with plasma temperature. 

When pfB becomes smaller than mfE, the number of electrons resonant with 

a given Fourier component of a field asymmetry decreases as T decreases. However, 

if the field asymmetry has multiple Fourier components, many possible resonances 

exist, and the total number of resonant particles does not neccesarily decrease. Thus, 

the observed Tm ex: T 0 scaling for fB < fE is not inconsistent with resonant particle 

transport theory. 

Another important parameter in resonant particle transport theory is fB/Vee, 

the ratio of the mean bounce frequency to the electron-electron collision rate. If this 

ratio is too small, collisions knock particles out of resonance before any transport oc­

curs. Non-resonant transport processes should then be dominant. This may explain 

the transition between temperature dependent and independent transport discussed 

in Section 3.3.3. This transition occurs when fE/ fB ~ 1. For most CV plasmas, 

Vee is large when fE/ fB ~ 1. Thus, the transition to the temperature independent 

regime may indicate that the plasma is too collisional for resonant particle transport. 

I have calculated fB/Vee at the transistion point for several sets of data and 

find that it is usually between 100 and 300. While knocking a particle out of reso­

nance presumably requires much less then a full 90° collision, this ratio is probably 

still too high to rule out resonant particle transport in the temperature independent 

regime. Nevertheless, neither the theory nor the data are clean enough to definitively 

rule out the observed transition as one between resonant and non-resonant transport. 



Chapter 4 

Transport and Mode Damping 
from Rotational Pumping 

4.1 Overview 

In this chapter, I present measurements of the radial expansion of the plasma 

and the damping of them= 1 diocotron mode from "rotational pumping" of a pure 

electron plasma column displaced from the trap's cylindrical axis. Rotational pump­

ing is the collisional dissipation of the axial compressions caused by E x B rotation 

of the column through asymmetric confinement potentials. In these experiments, the 

confinement potentials appear asymmetric only because of the displacement of the 

column from the symmetry axis of the trap. A schematic of the end of the plasma 

column is shown in Figure 4.1. The confining potential is strongest on the axis of 

the trap and weakest near the grounded wall. Hence, the length of a tube of plasma 

is maximal when the tube is closet to the trap wall, and undergoes a cyclic variation 

as the tube E x B drifts around the plasma axis. Electron-electron collisions act 

to dissipate this compressional motion. This dissipation causes the plasma to ex­

pand radially and increase in temperature over a time period of 105 or more column 

rotations. Simultaneously, the displacement of the column decreases, damping the 

diocotron mode. Ultimately, the plasma column axisymmetrizes with the cylindrical 

trap. 

50 
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----{> z 

Plasma tube 

Figure 4.1: Length of a tube of plasma in an off-axis plasma column is pumped by 
the E x B rotation. The curvature of the confining equipotentials makes the tube 
longer near the trap wall than near the trap axis. 

In Section 4.2, I describe measurements of the evolution of the plasma's den-

sity profile, temperature, and displacement from the trap axis. These measurements 

show that the total number of electrons and the total angular momentum of the 

plasma are both conserved by the expansion/ damping process. The total energy of 

the plasma is also conserved by the dissipation of electrostatic energy into heat. This 

thermal energy is then cyclotron radiated away. 

In section 4.3, I describe measurements of the transport and damping rate as 

a function of several plasma parameters. Because the transport conserves the total 

angular momentum of the plasma, the damping rate of the m = 1 diocotron mode 

provides a nondestructive measurement of the radial expansion of the plasma. These 

measurements indicate that the transport rate is independent of the magnetic field 

---- ---------- --------
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strength and that the mechanism behind the transport depends on the collisional 

equilibration of T1- and 111· 

In section 4.4, I present a simple theory, due to Crooks and O'Neil [7], that 

explains the observed transport and damping. They analyze the cyclic variation in 

the length of a tube of plasma as it drifts around the plasma axis. This variation 

causes a variation in T11. Collisions then act to equilibrate T1- and 111, resulting 

in an irreversible heating of the plasma. Equating the increase in thermal energy 

with Joule heating gives the radial electron flux, while conservation of Po gives the 

damping rate of the m = 1 diocotron mode. 

In section 4.5, I compare the predictions of the theory to measured particle 

fluxes and damping rates. The theoretical fluxes agree to within a factor of 3 with 

my measurements. The theoretical damping rates are in good agreement with my 

measurements, both in absolute magnitude and in scalings with plasma parameters. 

In section 4.6 and 4.7, I discuss 2 parameter regimes where the Crooks and 

O'Neil theory breaks down. At very low temperatures, where fE/ fB 2=: 1, the bounce 

motion of the electrons is no longer an adiabatic invariant, and the theory predicts 

additional transport due to bounce-rotation resonances. I do not observe this increase 

in transport, but find that the adiabatic invariant theory still works quite well. In the 

high temperature regime, the Debye length becomes large, and the "length" of a tube 

of plasma is ill-defined. In this regime, I observe an increase in the transport rate 

with temperature, whereas the theory predicts a decrease. At these temperatures, 

the confining electric fields cause a thermal spread in the E x B drift velocities. The 

increase in the damping rate can be qualitatively explained by this thermal spread. 

In section 4.8, I discuss the nonlinear damping of the m = 1 diocotron mode. 

I show that while the damping of large amplitude (D > Rp) modes is still described 

by the linear theory, the damping rate changes with time as the plasma density and 
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temperature profiles are changed by the damping process. In the strongly magnetized 

regime, the steep drop of the anistropic temperature equilibration rate causes a non­

linear instability in the plasma temperature, and consequently gives rise to unstable 

variations in the transport rate. This instability can cause bifurcations in the time 

evolution of the plasma displacement. Furthermore, if a resistive wall destabilizes 

the diocotron mode, nonlinear oscillations in the temperature result in "sawtooth" 

oscillations of the displacement of the plasma column. A simple computer model 

incorporating the unusual temperature dependence of the rotational pumping rate 

quantitatively reproduces this complicated, nonlinear "dance" of the diocotron mode 

[26]. 

In section 4.9, I discuss alternative mechanisms for the damping of them= 1 

diocotron mode and show that they have negligible effect compared to the rotational 

pumping mechanism. In section 4.10, I discuss how rotational pumping may be 

important in several other plasma experiments, neutral as well as nonneutral. 

4.2 Conserved Quantities 

In this section, I present measurements of a typical evolution of a plasma 

undergoing transport and mode damping caused by rotational pumping. The plasma 

in this evolution was initially about 3.5 cm long and 0. 7 cm in radius, with a central 

density of 7.5 x 109 cm-3. The initial temperature was 0.05 eV and the magnetic 

field was 40 kG. I created an m = 1 diocotron mode and observed the evolution of 

the plasma over 10 seconds, which is more than 106 column rotations. 

The evolution of the plasma displacement, radius, and temperature is shown 

in Figure 4.2. The initial displacement of the plasma column is D/Rw = 0.175. As 

D decreases, the plasma expands. In Figure 4.2, the "plasma radius" Rp is defined 
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Figure 4.2: The radius of an off-axis plasma column increases with time; the dis­
placement of the column simultaneously decreases. The initially cold plasma heats 
up and then slowly cools. The cooling time is much longer than the cyclotron radi­
ation time. 

by 

R - ~ foRw pdp nzp 
P - 2 rRw d ' 

Jo p p nz 
( 4.1) 

where nz is the z-integrated plasma density and p is the radial distance from the 

plasma axis as shown in Figure 4.1, i.e. r = D + p. For a uniform density column, Rp 

is the radius of the column. The temperature T shows a rapid initial increase, but 

after 0.5 seconds starts to slowly decrease due to cyclotron cooling. The measured 

radiation time at B = 40 kG is Trad = 0.29 sec [1], which is much shorter than 

the time on which T decreases. This indicates that the cyclotron cooling is nearly 

balanced by the generation of thermal energy in the plasma. 
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Figure 4.3: Evolution of the plasma density profile during rotational pumping. The 
central density decreases by a factor of 8 with a corresponding increase in radius. 

As time goes on, D decreases at a continually faster rate as Rp continues 

to grow. The plasma cools as the rate of generation of thermal energy decreases. 

Finally, D and Rp level off at constant values when T drops below 0.01 eV. 

Figure 4.3 shows the radial density profile at the axial center of the plasma, 

n(p, z = 0), at 3 different times during the evolution: 0, 1.7, and 10 seconds. A log 

scale is used on the vertical axis to show the radial extent of the final profile. These 

profiles were measured using the many-shot, deconvolution technique described in 

Section 2.4.2. The initially narrow, high density plasma undergoes considerable 

radial expansion, causing a decrease in the central density by a factor of 8 over 

the 10 second evolution. The shape of the profile also changes significantly. The 
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initial density profile has a very steep gradient, while the final profile has a much 

milder slope. Despite causing large changes in density profile, the transport process 

conserves the total number of electrons in the plasma, N. No electrons are lost to 

the trap walls or over the potential barriers at the end. 

The damping of the m = 1 diocotron mode as the plasma expands conserves 

the total angular momentum of the plasma, Po. The total angular momentum is 

proportional to (r2 ), the mean square radius of the plasma about the axis of the 

trap, as shown by Equation 3.1. The parallel axis theorem can be used to write 

(4.2) 

Figure 4.4 shows the measured values of ((p/Rw) 2
) and (D/Rw) 2 over the 10 second 

evolution. Initially the radius of the column is small compared to its displacement, 

and 97% of the angular momentum is in (D / Rw) 2
• As the plasma expands radially, 

the diocotron mode simultaneously damps, so that by 10 seconds only 1 % of the 

angular momentum is in (D/ Rw) 2
• The sum of ((p/ Rw) 2

) and (D/ Rw) 2 is constant, 

however, indicating that Po is conserved. The forces causing the transport must be 

azimuthally symmetric about the trap axis. 

The expansion/damping process converts the plasma's electrostatic energy, 

H<f>, into thermal energy, HT. To measure the total energy balance in the plasma, I 

calculate the energy lost to cyclotron radiation, Hrad; as well as the work done by the 

plasma on the power supplies, Wps, as they maintain the end cylinders at constant 

voltage. The values of H<f>, HT, Hrad, and Wps per electron are calculated as 

H<t> 1 J 3 -
2
N d xn(x,y,x)e<f>(x,y,z), (4.3) 

HT ~kT 
2 ' 

( 4.4) 

Hr ad ~lat kT dt' 
2 0 Trad ' 

(4.5) 

Wps 
l~Q 

-2NVc, ( 4.6) 
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Figure 4.4: Evolution of D 2 and (p2
) during rotational pumping, showing that the 

total angular momentum is conserved. 

where ~Q(t) is the change in the amount of charge on the end cylinders since t = 0, 

and I assume that Tl. ~ T11 = T since the anisotropic temperature equilibration rate 

is much faster than the cyclotron cooling rate, i.e. v .Lii .~ Tr~~-

Figure 4.5 shows the evolution of Hef>, HT, Wps, and Hrad· Over the 10 

second evolution, Ht/> decreases by 40% from its intial value as the plasma column 

expands. About 6% of this energy is recovered in Wps because the confining potentials 

compress the plasma axially as its space charge potential decreases. The electrostatic 

energy released is converted into heat, increasing HT over the first 0.5 seconds, until 

the Joule heating is overwhelmed by cyclotron cooling, gradually reducing HT. The 

dissipation of Ht/> into HT indicates that E x B drift dynamics alone (which conserve 
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Figure 4.5: Evolution of the electrostatic, radiated, thermal and power supply com-
ponents of the total energy during rotational pumping. The sum of the 4 components 
is conserved over the 10 second evolution. 

H<P) cannot be responsible for the observed transport. The total energy of the plasma, 

H<P + Wps +HT+ Hrad, remains constant over the evolution. This indicates that the 

plasma is not coupled to any unknown energy sources or sinks, and that the forces 

causing the transport are not time dependent. 

4.3 Damping Rates 

I characterize the transport by the damping rate of the m = 1 diocotron 

mode, which can be measured nondestructively. Figure 4.6 shows D as a function 

of time for 6 different initital displacements of essentially the same plasma. The 

displacement decreases exponentially with time, i.e. D = D0 exp(-1t), for D0 < Rp· 
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Figure 4.6: Damping of the m = 1 diocotron mode from 6 different initial displace­
ments. The damping is exponential in time for D < RP. 

Thus, the damping is a linear process for Do < Rp· 

I have measured the damping rate, /, as a function of several plasma pa-

rameters for D0 ~ Rp· The parameteric dependence of I exhibits several unique 

signatures. One is that, for moderate temperatures, it is nearly independent of mag-

netic field strength, as shown in Figure 4.7. As Bis increased from 10 to 60 kG, / 

decreases only about 30%. This is counter-intuitive, as transport rates usually scale 

with E x B drifts or the mean electron cyclotron radius, re, both of which decrease 

with B. Indeed, previous experiments on nonneutral plasmas have found transport 

rates that scaled as B-1 [13] or B-2 [11, 12]. 

The most striking signature of the m = 1 diocotron mode mode damping is 
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Figure 4. 7: The damping rate of the m = 1 diocotron mode is nearly independent 
of B for moderate temperatures. The dotted line is the estimated prediction from 
the Crooks and O'Neil theory; the solid line is the exact, numerically calculated 
prediction. 

the scaling of I with temperature, as shown in Figure 4.8. The damping rate drops 

by 2 orders of magnitude as the temperature is decreased from 0.01 eV to 0.003 

eV. In this regime, re is smaller than the distance of closest approach, b = e2 /T. As 

discussed in Section 2. 7, the anisotropic temperature equilibration rate, v .Lii i becomes 

exponentially small for re ~ b because colliding electrons can't get close enough 

together to exchange perpendicular and parallel kinetic energy [2, 22]. This is a 

strong indication that / <X v .Lii • The decrease in / at temperatures above 0.1 e V is 

also consistent with this dependence, as v .Lii <X r-3
/

2 at high temperatures. 
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Figure 4.8: The damping rate of the m = 1 diocotron mode drops precipitously 
when the electrons becomes strongly magnetized, i.e. when re < b. The dotted line 
is the estimated prediction from the Crooks and O'Neil theory; the solid line is the 
exact, numerically calculated prediction. 

4.4 Rotational Pumping Theory 

The recent theory of rotational pumping by Crooks and O'Neil [7] proposes 

that the plasma expands because the potentials produced by the confining voltages on 

the end cylinders are not azimuthally symmetric about the plasma axis, as shown in 

Figure 4.1. Thus, a tube of plasma is alternately compressed and rarefied as it E x B 

drifts around the plasma axis, producing a modulation in its parallel temperature. 

Crooks and O'Neil assume that the Debye length is small, i.e. >.n ~ LP. 

Thus, the potential along a field line is uniform inside the plasma and abruptly 
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increases at the ends, so that the bounce length of an electron is independent of 

its energy. The electrons move freely along the field lines, and specularly reflect off 

the "hard" ends of the plasma. The length of a tube of plasma at radius p is then 

described by 

L(p, t) = L0 (p) + 8L(p) coswRt, (4.7) 

where 8L ~Lo and wR(P)/27r = fE(P) - fd is the rotation frequency of the plasma 

in the diocotron mode frame, where the center of charge of the plasma is stationary. 

Ignoring radiation, the evolution of T1- and 711 in the tube of plasma are described 

by the equations 

( 4.8) 

(4.9) 

The -(2/ L )( dL/dt)111 term is the rate of increase of internal energy of an ideal gas as 

it is compressed, i.e. dW/dt = pdV/dt. I solve these equations perturbatively, as was 

done by Beck [l]. To zeroth order in 8L/ L0 , Eqs. 4.7- 4.8 give T1- (o) = 711(o) = T(p), 

where the superscript denotes the order. To 1st order, assuming vl. 11 ~WR, 

y(l) J_ 

r,(1) 
II 

(4.10) 

(4.11) 

The modulation of T
1
f l) is nearly in phase with the modulation in L, but a fraction 

2vl.11/WR of T1f1l is scattered into rfl. (Note that Vl.11/WR is always less than 1 in 

a nonneutral plasma.) The second term in Equation 4.11, multiplied by dL/dt in 

Equation 4.9, gives an irreversible heating to second order. The rate of change of the 

z-integrated thermal energy density in the tube of plasma, averaged over a plasma 

rotation, is 

~ k (d(T11+2TJ_)) - 2 kT (8L) z 2 nz dt - nz v l.11 L , 
rot 0 

( 4.12) 
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where n2 (p) is the z-integrated density and the brackets denote averaging over a 

rotation. Crooks and O'Neil assume that 271" fB ~WR, so th~t the electron bounce 

action is an adiabatic invariant, and 111 and TJ_ are uniform along the magnetic 

field. Using conservation of energy to equate the rotation averaged rate of change in 

thermal energy to the rotation averaged Joule heating caused by radial transport, 

( 4.13) 

one obtains an expression for the theoretical, z-integrated, rotation averaged, radial 

electron flux in the frame of an observer located at the center of charge of the plasma 

column, 

f!h( ) = 2n2 kT11.Lll (8L) 2 

P p -eEp Lo ' 
( 4.14) 

where Ep(p) is the radial electric field in the m = 1 diocotron mode frame. (A 

derivation of Equation 4.14 from a dynamical model is given in Appendix F.) 

4.5 Comparison between Theory and Experiment 

4.5.1 Fluxes 

I am able to directly compare the Crooks and O'Neil rotational pumping 

theory to my measurements, with no adjustable parameters, because all quantities 

on the right-hand side of Equation 4.14 can be determined experimentally. The tern-

perature and n 2 are directly measured, and v .Lii can be calculated from the measured 

values of T, n, and B. The 3-D density and potential profiles which are obtained 

from the measured n 2 and 111, by numerically solving the Poisson and Boltzmann 

equations are used to calculate the electric field. The radial electric field, density 

averaged along a field line, is defined by 

(4.15) 
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The 2-D plasma length profile is defined by 

L( ) 
_ n 2 (x,y) 

x, y - ( ) ' n x,y,z = 0 

where z = 0 is at the axial center of the plasma and (x - D) 2 + y 2 

difference in L(x, y) between two sides of the plasma determines 8L(p) 

1 
8L(p) = 2[L(p + D, 0) - L(p - D, O)], 

while L0 (p) is defined as the average between the two sides 

1 
Lo(p) = 2[L(p + D, 0) + L(p - D, O)]. 

( 4.16) 

p2 • The 

( 4.17) 

( 4.18) 

Given 2 z-integrated density profiles, n 2 (p, t) and n 2 (p, t + 8t), I define the 

rate of change of the z-integrated density by 

nz(p, i + 8t) - nz(P, i) 

8t 
( 4.19) 

By integrating the continuity equation, fJn/ fJt + V' · r = 0, an experimental value of 

the radial flux can be obtained: 

pxP(p) = - ~ [Pp' dp' fJnz(P'). 
P p Jo fJt 

(4.20) 

Using the density profiles I measured for the 10 second evolution shown in Fig-

ures 4.2-4.5, I have calculated r~xp(p, t) for each measurement time in that evolution. 

Figure 4.9 shows the ratio of f!h to r~xp plotted against p/ Rp, for t < 6 seconds. 

(The change in n(p) after t = 6 seconds was smaller than the measurement noise.) 

Around p = RP, most of the r~xp agree with the f!h within a factor of 1.5, although 

some only agree within a factor of 4. The large discrepancies between theory and 

experiment around p = 0 and p > 1.5.Rp can be explained by ripples in the measured 

density profiles. These are the result of measurement noise which is amplified by the 

deconvolution process described in Section 2.4.2. 



65 

10 1 
p.. 
>< 
Q) ct 
i:..i 

"-.. 
10° 

:9 ct 
i:..i 

0 
8 

0 

0 

0 0 

0 

0 0 

0 0 
0 

0 

0 0.5 1 1.5 2 
p/Rp 

Figure 4.9: Ratio of theoretical to experimental radial flux from rotational pumping 
as a function of distance from the plasma axis for the evolution shown in Figure 4.2. 
Theory and experiment are in general agreement. The large scatter in the data is due 
to difficulties in measuring nz(p). For each plasma, RP is defined by Equation 4.1. 

Examination of Equation 4.14, n(x, y, z), and </>(x, y, z) reveals why rotational 

pumping caused the decrease in the slope of the radial density profile shown in 

Figure 4.3. Because the plasma was fairly short, i.e. LP :::::::: 2.5Rw, Lo decreased by 

factor of 2 from the center to the radial edge of the plasma. This caused an increase 

in f~h at the plasma edge, which acted to "stretch out" the density profile. A longer 

plasma of the same density and temperature would have nearly the same vl.
11

, Ep, 

and 8L, but L0 would be nearly uniform in p. 
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4.5.2 Damping Rates 

The rotational pumping damping rate of the m = 1 diocotron mode, /rp, 

can be calculated from the theoretical radial flux by using the continuity equation 

and conservation of angular momentum: 

_ 1 dD 1 d(p2
) _ 1 J 2 1 8(pf~h) 

/rp = - D dt = D2 -----;[t = N D2 
27rpdp P p 8p . ( 4.21) 

This integral can be solved easily if the plasma is a column of uniform density 

and temperature with radius Rp and length Lp, and 8L is approximated by 8L = 

K(D / Rw)p, where K ~ 2.4 [50] (See Appendix B). Using this approximation, a theo-

retical estimate of them= 1 diocotron mode damping rate is given by 

2 ()..D) 2 
(Rp/Rw) 2 

lest= 21\, I/Lii Lo 1 - (Rp/ Rw)2' ( 4.22) 

where the factor 1 - (Rp/ Rw)2 appears in the denominator because the m = 1 

diocotron mode is a negative energy mode. Less dissipation of electrostatic energy 

is required than if the mode energy was nonnegative. (The estimated damping rate 

in Equation 4.22 can also be derived from a dynamical model of rotational pumping; 

see Appendix F.) 

The estimated damping rate is generally a factor of 5 smaller than the mea-

sured/, but gives approximately the correct scalings with plasma parameters. Much 

closer agreement is obtained, however, by using the n(x, y, z) and </>(x, y, z) which are 

numerically calculated from the measured nz and T to obtain r~h and then numeri­

cally integrating Equation 4.21. I denote the theoretical rotational pumping damping 

rates obtained in this way as /rp· The /rp are in close agreement with the data; they 

are generally a factor of 5 larger than the /est. There are 2 reasons for this difference 

between /rp and /est. One is that the /est calculation underestimates 8L. For the 

narrow columns used in these experiments, 8L = K(D / Rw)P is better approximated 

by K ~ 5 - 7 instead of 2.4, as shown in Appendix B. The other reason is that some 

----------- ----------------------
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Figure 4.10: The damping rate of the m = 1 diocotron mode is independent of 
displacment. The dotted line is the estimated prediction from the Crooks and O'Neil 
theory; the solid line is the exact, numerically calculated prediction. 

of the experimental density profiles are far from uniform, and have long, low density 

"tails." Hence, the effective radii of these plasmas is larger than the values used in 

calculating /est· The scalings of the measured and theoretical damping rates with 

plasma parameters are discussed below. 

Displacement 

As noted in Section 4.3, the damping of them = 1 diocotron mode is observed 

to be a linear process for Do < Rp· Thus, / is independent of D in this regime, as 

shown in Figure 4.10. According to the rotational pumping theory, the damping is 

independent of D because r~h ex: 8 L 2 ex: D2
' and /rp ex r~h I D2

• The theory agrees 
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with the data to within 20% for 5 x 10-4 < Do/ Rw < 10-2
• The decrease in I at 

large Do occurs because Joule heating overwhelms cyclotron cooling, increasing the 

plasma temperature. [For Do < 5 x 10-4 , 8L is smaller than the grid spacing used 

to numerically calculate n(x, y, z) and q)(x, y, z).] 

Magnetic Field 

Because WR ~ v J.ll in nonneutral plasmas and the plasma energy is domi­

nantly electrostatic, the theoretical damping rate depends on B only through v J.ll i 

which is consistent with the data in Figure 4.7. The plasma temperature for that 

data was 0.14 eV, so that re was greater than b for all the B. The equilibration rate 

then depends on B only through the Coulomb logarithimn, i.e. v J.ll <X ln( r cl b). 

Temperature 

The measured dependence of I on T shown in Figure 4.8 is largely explained 

by the theoretical dependence /rp <X v J.llT. The difference in slope between /rp 

and /est in Figure 4.8 at temperatures above 1 eV is due to a decrease in 8L with 

temperature. As shown in Appendix B, high temperatures decrease the space charge 

enhancement of 8L. Also, higher energy electrons see a smaller 8L because they 

penetrate farther towards the end cylinders where the vacuum equipotential surfaces 

have less curvature than those well inside the grounded confinement region, as shown 

in Figure 4.12. 

The discrepancy between the data and the solid curve in Figure 4.8 at tem­

peratures above 0.2 eV may be because at high enough temperatures AD "'8L, so the 

ends of the plasma can no longer be considered "hard." Thus, the length of a tube 

of plasma is no longer well-described by Equation 4. 7. The discrepancy may also 

be a sytematic error. If the plasma temperature increases with p, the damping rate 
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will be smaller than the measured value of 711 at the plasma center would indicate 

(assuming r c > b). This could happen if actively heating the plasma preferentially 

heats its outer edge and the radial thermal conductivity of the plasma is low. Energy 

transport in CV plasmas is discussed in Section 2. 7. 

End Shape 

The central idea of the Crooks and O'Neil theory is that /rp depends on an 

asymmetry in the shape of the plasma ends. A direct test of the theory is then 

provided by changing the end shape. Figure 4.11 shows the dependence of the 

measured damping rate on the confinment voltage Vc. As IVcl is lowered towards the 

plasma potential 1¢>pl, the ends of the plasma get closer to the "flat" equipotential 

surfaces at the boundaries between the end cylinders and the grounded cylinders, as 

shown in Figure 4.12. This decreases 8L and thus decreases /rp· The dotted curve 

in Figure 4.11 is flat because the calculation of /est assumes the plasma is well inside 

the grounded cylinders. 

Density 

Figure 4.13 shows / plotted against the plasma density averaged over the 

central collector Pl, i.e. plotted against -qi/ e as defined in Equation 2.3. The 

damping rate is nearly independent of n because v Lii ex n and XiJ ex n-1 , so the n 

dependence cancels out in Equation 4.22. The data and theory may disagree at low 

densities for the same reason that they disagree at high temperatures in Figure 4.8; 

Equation 4. 7 is not valid when >.n rv 8L. 

Plasma Radius 

The dependence of/ on the plasma radius is shown in Figure 4.14. In this 
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Figure 4.11: The damping rate of the m = 1 diocotron mode decreases as Vc 
approaches the plasma potential <f>v· The dotted line is the estimated prediction 
from the Crooks and O'Neil theory; the solid line is the exact, numerically calculated 
prediction. 

experiment, the plasma radius was changed by expanding the plasma column while 

keeping the total number of electrons, N, constant. Thus, as the plasma radius 

increased, the density decreased. Since 'Y is nearly independent of density, only the 

change in Rp should affect the damping rate. [In this plot, Rp is defined as the 

radius of a uniform density column required to give the measured N and density 

averaged over Pl.] The damping rate increases with Hp because a wider plasma 

extends farther over the curvature of the confining equipotentials. The difference in 

slope between the dotted and solid curves in Figure 4.14 is due to a decrease in 8L 

with Rp that is not accounted for in 'Yest· The dependence of 8L on RP and T is 
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Figure 4.12: The decrease in the curvature of the confining equipotentials near the 
confinement boundary gives an ill-confined plasma (Vc ,...., t/Jp) a smaller 8L than a 
well-confined plasma (IVcl ~ l</>pl). 

discussed in Appendix B. 

Plasma Length 

The dependence of / on the mean plasma length, LP (defined in Equa­

tion 2.12), is shown in Figure 4.15. The decrease in I with Lp is easily understood; 

the longer the plasma, the less the shape of its ends affects the electron orbits. The 

slight ripples in the data in Figure 4.15 are a systematic error; I was not able to 

keep the density profile exactly constant as I changed LP. The fact that /rp follows 

these ripples demonstates the accuracy of the numerically calculated 3-D density and 

potential profiles. 
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Figure 4.13: The damping rate of them= 1 diocotron mode is nearly independent 
of density. The dotted line is the estimated prediction from the Crooks and O'Neil 
theory; the solid line is the exact, numerically calculated prediction. 

4.6 Low Temperature Effects 

4.6.1 Resonant Particles 

Crooks and O'Neil predict that when the bounce frequency of a thermal 

electron is less than the rotation frequency, i.e. 27r fB = WB < WR, the bounce 

motions of the electrons are no longer an adiabatic invariants, and /rp is greatly 

enhanced by electrons whose bounce and rotation frequencies are resonant. If, for 

example, an electron's bounce frequency is one-half WR, it will always hit each end of 

the plasma at the same place and increase (or decrease) in energy with each bounce. 

This causes a larger cyclic variation in 711, which causes more energy to be scattered 
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Figure 4.14: The damping rate of them = 1 diocotron mode increases with plasma 
radius. The dotted line is the estimated prediction from the Crooks and O'Neil 
theory; the solid line is the exact, numerically calculated prediction. 

into TJ_ and increases the irreversible heating. The ratio of the resonant particle flux 

to the non-resonant, adiabatic flux in the Crooks and O'Neil theory is given by 

( 4.23) 

The resonant particle flux is independent of v .Lii; it depends on collisions only to 

knock particles in and out of resonance. Note that resonance here means WR= 2wB. 

Electrons with WR= WB will increase in energy at one end of the plasma but decrease 

at the other end. 

The resonant particle contribution to the theoretical damping rate is small 

for most of the data in this thesis. This is because the ratio WR/WB has a maximum 
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Figure 4.15: The damping rate of the m = 1 diocotron mode decreases with 
plasma length. The dotted line is the estimated prediction from the Crooks and 
O'Neil theory; the solid line is the exact, numerically calculated prediction. 

value of about 1.5 in CV plasmas, so there are usually few resonant particles and they 

are near zero energy in the Maxwellian distribution. However, even when a large 

resonant particle enhancement to / is predicted, it is not observed experimentally. 

This is demonstrated in Figure 4.16, which shows the measured dependence of/ on 

T for 2 data sets taken at B = 40kG. (The data in Figure 4.8 was taken at B = 

60kG.) The measured damping rate decreases as re becomes smaller than b, just as 

in Figure 4.8. Comparing the measured rates to /rp indicates that the actual plasma 

temperature for the left-most points is given by the low temperature extreme of the 

error bars. The theoretical damping rate including the resonant particle contribution 

is shown by the dashed curve labeled /res· It diverges from the data at temperatures 

--------------------------------------------------
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Figure 4.16: The damping rate is not enhanced by resonant particles due to the 
high collisionality of the plasma. The dashed line is the prediction of Crooks and 
O'Neil's resonant particle theory. It diverges from the data when JR > 2fs. The 2 
data symbols correspond to 2 different data sets. The plasma parameters are for the 
low temperature data. 

below 0.05 eV; increasing with decreasing temperature while the data decreases. The 

reason for this discrepancy is probably due to the high collisionality of the plasma. 

The effective collision rate at which electrons are knocked out of resonance is given 

by 

( 
WB )

2 

Vef f ~ v .Lii /:).ws ' ( 4.24) 

where /:).ws is the width of the bounce-rotation resonance in velocity space. This 

width is determined by the effective colision rate, i.e. 

( 4.25) 
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Combining these two equations yields an expression for Vef f 

( 4.26) 

The resonant particle transport theory applies only if Vef f ~ 2ws. For the data point 

at T = 0.003 eV in Figure 4.16, Equation 4.26 gives Veff ::::::: 0.7ws. Thus, despite 

being strongly magnetized, the electrons probably collide often enough to destroy 

resonances. However, resonant particle rotational pumping may be important in less 

collisional plasmas in other experiments, such as those described in References [38] 

and [23]. (Measurements of plasma heating presented in Appendix A support this 

idea.) 

4.6.2 Three Body Collisions 

Three body collisions should destroy bounce-rotation resonances, even if bi-

nary collisions are too weak. The three body collision rate can be estimated [1] 

by 

b2-
V3::::::: g n V. 

The plasma parameter, g, is given by 

g = (~)"" 

( 4.27) 

( 4.28) 

where a ::::::: n-1/ 3 is the mean inter-electron spacing. For the data point at T = 0.003 

eV in Figure 4.16, Eqs. 4.28-4.27 give g::::::: 0.15 and v3 ::::::: 23v.L 11 ::::::: ws. The 3 body 

collision rate is not suppressed at low temperatures as is v .LJI · Thus, the parallel 

velocity distribution relaxes to a Maxwellian through 3 body collisions much faster 

than through binary collisions. While 3 body collisions can wash out resonances, 

they do not change v .LJI, as is demonstrated by the agreement between the data and 

the adiabatic theory in Figure 4.8 and Figure 4.16. 
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4.6.3 The Fluid Limit 

The close agreement between the adiabatic theory and the data in Figures 4. 7-

4.16 when WB < WR is unexpected for 2 i:easons. First, the bounce motion of the 

electrons is not an adiabatic invariant as Crooks and O'Neil assume. Second, the 

bounce motion of the electrons is not rapid enough to keep the plasma in local 

thermal equilibrium along each magnetic field line, as is assumed in the numerical 

calculation of the z-dependence of n and </>. The adiabatic theory still works in this 

regime probably for the same reason that the resonant particle theory doesn't work. 

The high collisionality of the plasma prevents the rapid variation in the length of 

a tube of plasma from driving the plasma far from thermal equilibrium. In this 

regime, the plasma is better viewed as a fluid, and the transport and irreversible 

heating caused by rotational pumping can be viewed as dissipation of a compressible 

flow by a "second" or "bulk" viscosity. In the guiding center approximation, the 

cyclotron motion of the electrons is a "hidden" degree of freedom, like the vibrations 

and rotations of gas molecules [35]. Equilibration of hidden and translational degrees 

of freedom gives rise to a second viscosity (36]. The rate of dissipation by the second 

viscosity in a compressible fluid is given by 

3 d 2 
--d (nT) = ((\7· v) . 
2 t 

( 4.29) 

The second viscosity coefficient, (, can be obtained for a single species plasma by 

deriving Equation 4.12 without assuming WR ~ v.L 11 and comparing it to the time 

average of Equation 4.29; ( can then be expressed as 

( 4.30) 

In my experiments, / is independent of WR because WR ~ v Lii and v ex: WR. In 

the inaccessible opposite limit where WR ~ v .Lii, ( resembles Braginskii's [3] parallel 
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electron viscosity coefficent, which can be written as 

nT 
'f/o:::::::-, 

Vee 
( 4.31) 

where Vee is the electron-electron collision rate. Braginskii derives 'f/o in the fluid limit 

where v;/ is shorter than any macroscopic timescales. One may then naively wonder, 

since 'f/o ex: T 512
, if it is this viscosity which is responsible for the strong increase 

in / with T at low temperatures in Figure 4.8 and Figure 4.16, where Vee > WR. 

Braginskii's calculation, however, is performed in the limit of weak magnetization, 

where >.v ~ 'T'c· In confined nonneutral plasmas, the opposite condition holds, i.e., 

>.v ~ re, and Vee in Equation 4.31 must be replaced by v.Lll· Thus, Braginskii's 

parallel viscosity is the low frequency limit of what I have called a second viscosity. 

Braginskii worked in this limit so that he could assume that the distribution 

function was nearly Maxwellian. For the case of rotational pumping, however, this is 

unneccesarily restrictive as long as the plasma is cold enough that the Debye sheath 

at the plasma ends is very short, i.e. >.v ~ LP. The electrons then travel along 

the magnetic field lines as if they are in a square potential well. The rotation of 

the plasma through the confining potentials causes a cyclic variation in the length 

of the well, 8L, but the variation is independent of the energies of the individual 

electron. Thus, if WB > WR, the conservation of each electrons bounce adiabatic 

invariant keeps the parallel velocity distribution a Maxwellian even in the abscence 

of collisions. If WB :::; WR resonances can occur, but a high enough collision rate will 

destroy the resonances and keep the velocity distribution a Maxwellian. 

4. 7 High Temperature Effects 

When the Debye length in the plasma becomes large, i.e. >.v "'Rp, the agree-

ment between the rotational pumping theory and experiment begins to weaken. This 

can be seen at the highest measured temperatures in Figs. 4.8 and 4.16. The exper-
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Figure 4.17: The measured damping rate increases with temperature, diverging 
from /rp, when >.n becomes comparable to Rp. 

imental I starts to increase with temperature, while the theory predicts a continued 

decrease. This discrepancy is even more evident in Figure 4.17, which shows the 

dependence of/ on high temperatures. The agreement with the Crooks and O'Neil 

theory is similar to that for the moderate temperature points in Figure 4.16, but 

the high temperature discrepancy is unmistakable. The measured value of / is a 

factor of 10 higher than the theory at 18 e V. For all three data sets, this discrepancy 

occurs when >.n ,....., Rp, i.e. when the kinetic and potential energies of the electrons 

are comparable. 

Crooks and O'Neil's assumption that the plasma has "hard" ends (Equa-

tion 4. 7) is inapplicable at high temperatures, where the De bye sheath at the plasma 
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ends is much larger than 8L. A possible explanation of the increase in / in this 

regime comes from the dependence of the electrons' E x B orbits on their parallel 

energy, E11. As noted in Section 4.5.2, a high energy electron will penetrate farther 

into the confining potentials, and be affected by different electric fields, than a low 

energy electron. Thus, the E x B rotation frequency of the plasma, WR, and the 

m = 1 diocotron frequency, wd, are functions of 711· In addition, there is a thermal 

spread in the bounce-averaged E x B velocities of the individual electrons, and this 

spread becomes more pronounced as 111 increases. 

Despite the thermal spread in the E x B velocities, the rapid rotation of the 

plasma prevents the "smearing out" of the plasma which was observed by Peurrung 

[49]. For example, the measured m = 1 diocotron frequency, wd, for the T=18 eV 

data point in Figure 4.17 is about 5% higher than at T=0.2 eV. The thermal spread 

in Wd is presumably about 5% as well. The damping time is still greater than 105 

diocotron periods, however, indicating that the thermal spread in wd averages out to 

zero over a plasma rotation. 

Although the plasma does not smear out, the thermal spread in WR may still 

effect the rotational pumping damping rate. I can obtain wR(P) from the </>( x, y, x) 

calculated from the measured nz (p) and 111 · For the data in Figure 4.17, I find that 

WR decreases with temperature, indicating that WR for individual electrons decreases 

with E11. This means that electrons with E11 > k711/2 will drift slower than a tube 

of plasma E x B drifting at the thermal WR while electrons with E11 < kTu/2 will 

drift faster. Thus, if the tube E x B drifts up a gradient in 711i the electrons drifting 

into the tube have more energy than those drifting out. This effect would tend to 

amplify the variation in 711 in the tube during rotational pumping, causing a larger 

exchange in energy between Tl. and 711, and thereby increasing/. 

Modeling the the thermal spread in WR is beyond the scope of Crooks and 



81 

O'Neil's theory. While the 3-D plasma density and potential profiles can be found 

numerically, calculating the bounce-averaged E x B drifts as a function of E 11 would 

be extremely difficult. Calculating the effect of collisions on the electron orbits would 

then add another level of difficulty. Hence, the cause of the high temperature increase 

in / remains unknown. 

4.8 Nonlinear Effects 

All the damping rates presented so far in this Chapter were measured using 

small displacements, such that Do ~ RP. When the initial displacement is large, 

i.e. D0 ~ Rp/2, the damping is no longer exponential in time; the damping rate 

changes as D decreases, as in Figure 4.2. However, this behavior is still explainable 

by Crooks and O'Neil's rotational pumping theory. Figure 4.18 shows the evolution 

of the measured damping rate/ for the plasma evolution shown in Figure 4.2. The 

damping rate is initially small, increases by an order of magnitude over 7 sec, and 

then rapidly decreases over the final 3 sec. The fluctuations in I fort < 2 sec are due 

to measurement noise: the measurement period is much smaller than ,-1 . The solid 

curve is again /rp, calculated using the measured D, nz(p), and T. The measured 

rates are well-explained by the theory, indicating that the change in I is clue to 

changes in n(x,y,z), ~(x,y,z), and T. 

The damping rate decreases after 7 seconds because the plasma has become 

strongly magnetized, i.e. re ::::; b, as a result of cooling from cyclotron radiation. In 

this regime, I decreases strongly with the decreasing temperature. This dependence 

provides the only mechanism for a decrease in /, as can be seen from the expression 

for /est in Equation 4.22. As the plasma evolves, D decreases, Rp increases, while 

B and Lp remain nearly the same. Thus, any decrease in / must come from a 

decrease in v Lii T. Cyclotron cooling ensures that after a few radiation times, dT / dt 
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Figure 4.18: The damping rate for the evolution shown in Figure 4.2 changes with 
time but is still explainable by the rotational pumping theory. The damping rate 
rapidly decreases when the elecrons become strongly magnetized. 

is negative. Therefore, v1.
11
T decreases only at temperatures where d( v .LllT) / dT is 

positive.; i.e. temperatures on the left-hand side of the peak in Figure 4.8. Thus, the 

change in d1 / dt from positive to negative provides a signature, in the time evolution 

of D, of the transition to the strongly magnetized regime. 

The transition to the strongly magnetized regime produces a nonlinear in-

stability in the evolution of the plasma temperature. The rate of change of the 

temperature at a given radius p is given by 

dT 
[
4 (8L) 2 

1 l 3 v.Lll Lo - Trad T, ( 4.32) 
dt 

where the first term in the brackets is the heating from rotational pumping given by 
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Equation 4.12 and the second term is the cooling from cyclotron radiation. (Here I 

have assumed that 711 ::::d TJ. ::::d T.) The radiative cooling time, Trad, is independent 

of temperature (as long as Tis large comnpared to the wall temperature), while vl. 11 

peaks at the temperature where re ::::db (as indicated by Figure 4.8). Therefore, there 

are two equilibrium temperatures where dT / dt = 0. 

The stability of these equilibrium temperatures can be examined by lineariz-

ing Equation 4.32. Defining T0 as an equilibrium temperature and T1 ~ T0 as a 

perturbation away from equilibrium, the rate of change of T1 is given by 

[~T~ (8L) 2

] T 
3 dT Lo I· 

To 

( 4.33) 

This equation shows that the high temperature equilibrium is stable because dv Lii / dT 

is negative for r c > b. That is, increasing the plasma temperature decreases the 

rotational pumping heating rate, so the plasma cools back to the equilibrium tern-

perature. Similarly, decreasing the temperature increases the rotational pumping 

heating rate, which also drives the plasma back to the equilibrium temperature. 

Conversely, the lower equilibrium temperature is unstable because dv Lii / dT is 

positive when re < b. Increasing the temperature increases the heating rate, so that 

the plasma heats until the stable equilibrium temperature is reached. Similarly, if the 

temperature is decreased, the plasma unstably cools down to the minimum possible 

temperature, which is set either by the 4.2K wall temperature or by low-level heating 

from anomalous transport. 

This nonlinear temperature instability can result in a bifurcation in the pos-

sible plasma evolutions, such as that shown in Figure 4.19. Two different observed 

time evolutions of D are shown. The injection conditions for both evolutions were 

nearly identical, and the initial displacements differed by less than 1 %. The two 

evolutions are the same over the first 16 seconds, but then diverge, until the dis-

placement at t = 50 sec in branch A is over twice the displacement in branch B. 
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Figure 4.19: Bifurcation in the evolution of D caused by temperature instability. 
Slightly different initial conditions result in 2 widely separated final states. The 
arrow shows where / starts decreasing. 

The change in sign of d1 / dt at t = 11 sec indicates that the electrons are becoming 

strongly magnetized. 

The bifurcation presumably occurs because the plasmas following branch 

A reach the unstable temperature regime earlier than those following branch B. 

In branch A, T, and hence /, unstably decreased at the branch point. The fact 

that the instability saturated before I went to zero is probably due to the weak 

Joule heating from anomalous transport. In branch B, the slightly different initial 

conditions presumably resulted in slightly stronger Joule heating at the branch point. 

Since dT / dt is small in the stable temperature regime, this slight increase in heating 

caused / to remain large for a longer time, resulting in a smaller final displacement 
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Figure 4.20: The evolution of the plasma displacment and radius during the "Dance 
of the Diocotron." The mode is driven by a 30 kn resistor attached to a sector probe. 
Electrons start being lost at 275 seconds, indicating the plasma is scraping the wall. 

than branch A. 

The nonlinear temperature instability also explains previously observed "saw-

tooth" oscillations in the amplitude of a destabilized m = 1 diocotron mode [26]. 

Here, the diocotron mode is destabilized by attaching a resistor to a sector probe. 

The image charge currents in the sector probe dissipate energy in the resistor, caus-

ing the negative energy mode to grow [63]. The growth rate is nearly independent 

of changes in the plasma parameters caused by the evolution of the plasma. 

Figure 4.20 shows the evolution of D and Rp/ Rw that the results from the 

competition between rotational pumping damping and resistive growth. Initially, 
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the mode grows exponentially in time. This growth saturates after 20 seconds, 

and is followed by 90 seconds of much slower increase in D. At 110 seconds, the 

mode amplitude undergoes "sawtooth" oscillations, which have a period of about 

20 seconds. These oscillations, sometimes called the "Dance of the Diocotron," can 

continue for thousands of seconds. The plasma radius slowly increases during the 

"Dance;" eventually, D and Rp become so large that electrons start being lost to the 

walls. This occurs at 275 seconds in Figure 4.20. 

Despite its complexity, the basic features of the "Dance of the Diocotron" can 

be explained by the rotational pumping theory. To demonstrate this, I developed 

a simple computer program which models the evolution of a uniform density and 

temperature plasma under the influence of resistive growth (63), rotational pumping 

transport [Eqs. 4.12,4.14, and 4.22], and cyclotron cooling. This program includes 

the finite-length increase in the diocotron mode frequency (17), the effect of a finite 

wall temperature on radiation [1], and the dependence of the plasma end shape on 

Rp [Figure B.3). The program also includes the independently measured anomalous 

transport. 

Given the initial conditions shown in Figure 4.20, the program calculates the 

plasma evolution shown in Figure 4.21. This simulation shows that the electrons 

become strongly magnetized within the first few seconds. Thus, the initial damping 

rate is small and D increases at the resistive growth rate. Saturation occurs when 

D has increased enough that the Joule heating term in Equation 4.32 overcomes the 

cyclotron cooling, increasing the temperature and the damping rate. (The decrease 

in D from 20 to 30 seconds does not appear in the measured evolution shown in 

Figure 4.20, but was seen in many similar evolutions.) The slowness of the subsequent 

growth of D indicates that the resistive growth is nearly balanced by rotational 

pumping damping. At the temperatures shown for this part of the evolution, both 
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Figure 4.21: Computer simulation of the "Dance of the Diocotron," given the 
initial conditions shown in Figure 4.20. The basic features of the measured evolution 
are reproduced. The sawtooth oscillations are caused by unstable oscillations in the 
plasma temperature. 

dT/dt and dvJ..
11
/dT are small because re~ b, so that/ stays nearly constant from 

30 to 75 seconds, at which time the sawtooth oscillations begin. 

The oscillations occur because the temperature can unstably grow as well 

as decrease. The damping rate is small when the plasma is at a low temperature 

such that re ~ b. The displacement D then increases at the resistive growth rate. 

Eventually, hL ex D becomes large enough that the rotational pumping heating 

rate at the lowest possible temperature is larger than the cooling rate, causing the 

temperature to unstably increase. The accompanying increase in / causes D to 

decrease until the plasma cools off again. This cycle is then repeated. 
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The form of the "Dance of the Diocotron" is strongly dependent on the 

minimum possible plasma temperature. If the minimum temperature is too low, 

the damping rate becomes so small that the diocotron mode simply grows until the 

plasma hits the wall. In Figure 4.21, the minimum temperature is set by the low­

level heating caused by slow anomalous transport. In the simulation, the minimum 

temperature can also be set by changing the wall temperature, Tw. Figure 4.22 

shows the evolution of D / Rw at wall temperatures of 17K, 29K, and 45K, with the 

anomalous transport rate set to zero. As Tw increases, the height of the initial rise 

in D decreases; also, the sawtooth oscillations become weaker, increase in frequency, 

and start later in time. 

Raising Tw increases the minimum v.L
11

, which decreases the time required 

for the temperature to unstably increase to the point at which rotational pumping 

damping overcomes resistive growth. Thus, the period of the sawtooth oscillations 

decreases. Since the resistive growth rate is independent of Tw, the amplitude of the 

oscillations decreases as the period increases. 

Similarly, the initial rise in D gets damped out earlier as Tw increases, which 

reduces the amount of radial expansion which occurs. The narrower plasmas stay 

hotter because they have larger 8L at a given p, as shown in Figure B.3; this causes 

the plasma to stay in the stable temperature regime longer, as indicated by the 

increase in the slow growth section of the evolution as Tw increases. At high enough 

Tw, the temperature never reaches the unstable regime again, and the sawtooth 

oscillations never occur. 

4.9 Alternative Theories 

The close agreement between my measurements of I and the predictions of 

Crooks and O'Neil's theory, both in terms of the magnitude of I and its param-
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Figure 4.22: Simulations of the "Dance of the Diocotron" at 3 different wall tem­
peratures, Tw, with the anomalous transport rate set to zero. As Tw increases, the 
sawtooth oscillations become weaker, increase in frequency, and start later in time. 
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eter dependence, leaves little doubt that rotational pumping is responsible for the 

transport and damping which I observe. It is worthwhile, however, to examine other 

ideas about the damping of the m = 1 diocotron mode. The earliest theory, by 

Prasad and O'Neil [53], postulates that in a finite length plasma where WB ~ WR, 

the m = 1 diocotron mode can couple to an m = 1 plasma mode. The plasma mode 

will Landau damp, providing a sink for the energy released by the damping of the 

diocotron mode. The predicted damping rate is approximately 

w 2 2w nT112 

/ ~ _P_ WB ln(-c) "J --, 

Wc 2 Wp B 2 
( 4.34) 

where We is the cyclotron frequency and Wv is the plasma frequency. Besides the 

disagreement with the observed magnetic field scaling, this theory predicts values of 

/ which are 2 to 3 orders of magnitude above the measured values. However, the 

condition WB ~WR is never satisfied in CV plasmas, so this mode coupling probably 

never occurs. 

Another possible damping mechanism is the shear, or "first", viscosity. As 

shown by Fine [18, 20], the electric fields from the image charges in the wall cause an 

off-axis plasma column to distort from a circular cross-section into an elliptical one. 

This causes shears in the E x B flow, which are acted upon by the shear viscosity, 

resulting in irreversible heating and a dissipation of electrostatic energy through 

expansion of the plasma. Conservation of Po results in the damping of the mode. 

In Appendix E, I calculate the damping rate from shear viscosity for an isothermal, 

uniform density plasma. This shear-driven transport is much smaller than rotational 

pumping, for 2 reasons. First, the elliptical distortions scale as D2 , while 8L scales as 

D. Second, theoretical [45, 46] and experimental [13] estimates of the shear viscosity 

coefficient show it to be much smaller than the second viscosity coefficient. 

It has also been speculated that trap asymmetries may damp the m = 1 

diocotron mode. I have found no evidence to support this idea. Except in the strongly 
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Figure 4.23: The damping rate of the m = 1 diocotron mode is insensitive to 
magnetic field tilt. 

magnetized regime, / is nearly independent of magnetic field, whereas anomalous 

transport from inherent trap asymmetries decreases strongly with magnetic field. 

Externally induced asymmetries, such as misalignment between the magnetic field 

and the confinement cylinders, do not seem to affect/ either. Figure 4.23 shows that 

the measured damping rate varies by less than 10% as the angle of magnetic field 

tilt varies over 10 milliradians, whereas the magnetic field in CV is aligned within 1 

milliradian. 
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4.10 Further Consequences of Rotational Pump-
• Ing 

The damping of the m = 1 diocotron mode may be only the simplest effect 

caused by the rotational pumping mechanism. In Appendix D, I show how rotational 

pumping should also damp the m ~ 2 diocotron modes at nearly the same rate as 

the m = 1. It may also cause the dissipation of several otherwise stable nonneutral 

plasma configurations, including 2 electron vortex equilibria [40], vortex crystals 

[19], asymmetric equilibria [41, 42], and toroidal plasmas [34]. Rotational pumping 

may also damp asymmetric E x B flows in certain neutral plasma traps, such as non-

axisymmetric magnetic mirrors [23, 28, 54]. Because the electrostatic and mechanical 

energy in neutral plasmas is small compared to their thermal energy, the effect 

of rotational pumping may be quite strong. The analagous process of "magnetic 

pumping" [60] is suspected to damp the poloidal rotation in tokamaks in an ion-ion 

collision time [59]. 

It is interesting to note that at temperatures around 0.1 eV, the damping 

rate of the m = 1 diocotron mode is nearly independent of n, T, and B, which are 

the usual parameters used to describe a plasma. The damping rate only depends 

on Rp and Lp, parameters which describe the shape of the plasma's boundary. This 

points up the difference between the rotational pumping theory and the resonant 

particle transport theories described in Chapter 3. In both types of theories, the 

transport is caused by field asymmetries. The resonant particle transport theories 

describe these field asymmetries as extending over the entire plasma; the rotational 

pumping theory, on the other hand, assumes that the plasma shields out the field 

asymmetries, so that they only affect the shape of the plasma boundary. 



Chapter 5 

Squeeze Damping of the m 1 
Diocotron Mode 

5.1 Overview 

In this chapter, I present measurements of the damping of the m = 1 dio­

cotron mode caused by the "squeeze" perturbation. The squeeze perturbation is an 

azimuthally symmetric, z-dependent electrostatic field asymmetry. It was originally 

observed by Fine [16] to strongly damp the diocotron mode. The reason for this 

damping is still unknown. In Section 5.2, I discuss how the squeeze pertubation is 

created and Fine's measurements of the damping of the diocotron mod_e. 

In section 5.3, I present my own measurements of the squeeze damping of the 

diocotron mode and compare them to Crooks and O'Neil's rotational pumping theory 

[7]. I find, as did Fine, that for long enough plasmas, the damping is exponential 

in time and that the damping rate increases with the amplitude of the squeeze 

perturbation. Furthermore, I find that, for moderate to high temperatures, the 

damping rate decreases with temperature, increases with plasma radius, and scales 

only weakly with density. While the scalings with plasma parameters are predicted 

by rotational pumping theory, the scaling with squeeze voltage is not. In fact, the 

theory predicts that the squeeze perturbation decreases the damping rate of the 

m = 1 diocotron mode. This directly contradicts the experimental results. Finally, I 
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show that a squeeze perturbation can decrease the measured damping rate of short 

a plasma; this decrease is correctly predicted by the rotational pumping theory. 

In section 5.4, I show that rotational pumping theory predicts a decrease in 

the damping rate because the squeeze perturbation decreases the cyclic variation 

in the length of a tube of plasma as it E x B drifts around the plasma axis. The 

squeeze voltage acts to reduce the curvature of the vacuum equipotentials, which 

reduces the radial electric fields at the plasma ends. 

In section 5.5, I discuss how the squeeze perturbation may create non-Max­

wellian variations in the parallel electron energy distribution. These variations are 

not included in the Crooks and O'Neil theory, and dissipation of these variations by 

collisions may be responsible for squeeze damping. I show numerical calculations of 

the plasma end shape which indicate that the effect of the squeeze perturbation on an 

electron depends on that electron's energy. Also, I find experimentally that squeeze 

damping is unaffected by the decrease in the anisotropic temperature equilibration 

rate, v .Lil, in the strong magnetization regime. This indicates that the collsions do 

more than just equilibrate the parallel and perpendicular temperatures 711 and TJ... 

In section 5.6, I compare my data to two resonant particle transport theories. 

First, I show that the resonant particle contribution to rotational pumping does not 

improve the agreement of the Crooks and O'Neil theory with my data. I also discuss a 

"beat-wave" damping theory by Crawford and O'Neil [6, 5], to which Fine compared 

his results. I show that the assumptions of this theory are not in agreement with the 

experimental data; however, my data is not strong enough to totally disprove the 

theory. 
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Figure 5.1: The "squeeze" perturbation. Applying Vsq to one-half the plasma 
length squeezes the outer edge of the plasma into the grounded cylinder. 

5.2 The Squeeze Perturbation 

The squeeze perturbation is a static voltage applied to an azimuthally sym­

metric cylinder, shown schematically in Figure 5.1. A negative voltage, Vsq, is applied 

to the "squeeze cylinder" which contains half the length of the plasma. The elec­

trons move to shield out the applied voltage, and the outer edge of the plasma is 

"squeezed" into the remaining grounded cylinder. Fine [16] discovered that when the 

squeeze perturbation is applied while an m = 1 diocotron mode is present, the mode 

rapidly damps. He observed that the total angular momentum, Po, is conserved 

during the damping by an expansion of the plasma column. This is consistent with 

the fact that the squeeze perturbation is azimuthally symmetric. Fine also found 

that the displacement, D, decreased exponentially in time, i.e. 

D(t) = Do exp(-/sqt). (5.1) 

Finally, Fine observed that, for small amplitudes, the squeeze damping rate, /sq, 

scaled as 

V2B-2 /sq <X sq ' (5.2) 
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and ranged between 0.1 sec-1 and 1000 sec-1 for the plasmas he studied on the EV 

machine at UCSD. 

I have investigated squeeze damping of the m = 1 diocotron mode on the CV 

machine in order to compare it to the damping caused by rotational pumping. In my 

experiments, I confined the plasma in the cylinders 13-15 shown in Figure 2.2; the 

length of this confinement region is Le= 10.16 cm. The P5 collector plate was used to 

shield the Pl-P4 collector plates from the ramping of the dump gate. This decreased 

the resolution of the radial profiles of wide plasmas. The squeeze voltage was applied 

to the 15 cylinder, which is 5.207 cm long. The plasma was injected, manipulated 

to the desired initial condition, and then moved off axis. The squeeze voltage was 

ramped to the desired magnitude over 50 msec, which is more than 100 diocotron 

orbits. The squeeze voltage then remained constant for the entire measurement 

period of 2-10 seconds. The temperature, T, of the plasma was maintained at a 

constant value by using only small displacements, i.e. D <{:::: Rw, and by applying 

a modulating voltage to cylinder 13 to balance cyclotron cooling. For each set of 

initial conditions, the damping rate of them= 1 diocotron mode was measured both 

with the squeeze voltage applied to 15 and with 15 grounded. 

5.3 Damping Rates 

I have measured the dependence of the squeeze damping rate, /sq, on various 

plasma parameters. The damping rates are plotted in Figures 5.2-5.6 as squares. 

The measured damping rates with no squeeze, Ins, are plotted as diamonds. The 

dot-dash curves show the predictions of Crooks and O'Neil's rotational pumping 

theory for the damping rate of the squeezed plasmas, /rp· 

The predictions of the rotational pumping theory for the squeezed plasmas 

were calculated in exactly the same way as they were for unsqueezed plasmas in Chap-
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ter 4. Using the 3D Poisson-Boltzmann code described in Section 2.4.3, the density 

n(x,y,z) and potential </>(x,y,z) were calculated from the measured z-integrated 

density nz(p), parallel temperature 111, and displacement D, given the confinement 

voltage Vc and the squeeze voltage Vsq· (Due to the lack of resolution caused by 

using P5 as a voltage shield, I assumed that nz(p) was a constant out to some RP, 

except for the data shown in Figure 5 .4.) These profiles were then put into the 

Crooks and O'Neil theory, and Equation 4.21 was numerically integrated to obtain 

the predicted rotational pumping damping rate /rp· I also performed this analysis 

for Vsq = 0 V. As expected, the theory correctly predicts the parametric dependence 

of /ns· However, the magnitude of the the predicted rates only agrees with the /ns 

to within a factor ·of 2. This slight discrepancy is probably due to using a square 

density profile to approximate nz(P ). 

5.3.1 Displacement 

I have found, like Fine, that the damping caused by the squeeze perturbation 

is exponential in time for small displacements. That is, /sq, like /ns, is independent 

of D0 , as shown in Figure 5.2. For this data, the squeeze voltage was Vsq= -16V, 

while the confinement voltage on the end cylinders was Vc = -200V. For comparison, 

the space charge potential at the center of the plasma, </>p, was about -33V. These 

parameters give a squeeze damping rate /sq ~ 0.2 sec-1
, about an order of magnitude 

greater than the damping rate without squeeze. 

While rotational pumping theory correctly predicts that the damping rate of 

the squeezed plasma should be independent of D, it gives the wrong damping rate. 

In fact, the Crooks and O'Neil theory predictes that the squeeze perturbation should 

reduce the damping rate by a factor of 5. 
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Figure 5.2: The squeeze damping rate is independent of displacement. The 
dot-dashed curve is the rotational pumping theory prediction for the squeezed 
plasma. 

5.3.2 Squeeze Voltage 

I find that the squeeze damping rate increases with the magnitude of the 

squeeze voltage, as shown in Figure 5.3. The plasma parameters of the plasma 

measured for this data were the same as those shown in Figure 5.2. As IVsq I is 

increased from 2V to 54V, /sq - /ns increases by 2 orders of magnitude. The arrow 

on the left indicates the magnitude of /ns, while the arrow at the bottom shows the 

magnitude of </Jp· For small squeeze voltages, the increase in the damping rate due to 

squeeze, /sq - /ns, increases as ~!, as shown by the dashed line. This is consistent 

with Fine's measurements. When Vsq becomes more negative than the space charge 
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parameters are the same as in Figure 5.2. 

potential, the squeeze damping rate scales less strongly with Vsq· At these squeeze 

voltages the plasma is getting squeezed out of the 15 cylinder. When Vsq becomes 

comparable to Vc, the plasma should be entirely excluded from 15, and the squeeze 

damping rate presumably goes to zero. Fine also saw a similar decrease in the scaling 

of /sq - /ns with Vsq, but at a lower magnitude of Vsq rv -1 V. 

The V:~ scaling is consistent with linear perturbation theory. This is because, 

for I Vsq I ~ I Vc I, the damping rate cannot depend on the sign of the squeeze voltage. 

This can be seen by changing the definition of ground in Figure 5.1 by increasing 

all voltages by -Vsq. This does not change any of the physics, but now cylinder 3 is 
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grounded while cylinder 2 is at the positive voltage of -Vsq. Therefore, /sq cannot 

scale as Vsq, and thus scales as V:~, the next lowest order. 

While the measured /sq increase with -Vsq, rotational pumping theory pre­

dicts a decrease for all but the largest values of I Vsq I· The theoretical rate increases 

for IVsq I greater than 30V because the plasma is being pushed out of the L5 cylinder. 

Thus, the overall plasma length is decreasing, which increases the effect of rotational 

pumping. This is consistent with the measured decrease in the dependence of /sq on 

Vsq when IVsql > l</>pl· At large enough -Vsq, the squeeze perturbation is pushing the 

plasma out of the squeeze cylinder more than it is squeezing the plasma. 

5.3.3 Temperature 

I have also measured the dependence of /sq on the plasma temperature, T, 

for moderate to high temperatures. Figure 5.4 shows that as Tis increased from 0.3 

eV to 20 eV, the squeeze damping rate decreases about an order of magnitude, giving 

a scaling of /sq ex r-1
/ 2 . This is the same scaling as /ns for 0.3 eV < T < 4 eV. 

At higher temperatures, however, /ns starts to increase with T while /sq continues 

to decrease, just as in Figure 4.17. Above T = 10 eV, the squeeze perturbation 

actually decreases the damping rate. This indicates that the squeeze perturbation 

may somehow suppress the thermal spread in bounce averaged E x B drifts that was 

discussed in Section 4. 7. 

The decrease in /sq with temperature may explain the decrease in /sq at large 

displacements that was seen by Fine. As the diocotron mode damps, the plasma 

column expands in order to conserve angular momentum. This expansion causes 

Joule heating, and the larger the displacement the more the plasma must expand. 

Hence, /sq should decrease with D at large displacements, due to an increase in 

temperature. The same effect occurs in damping from rotational pumping, as shown 

in Figure 4.10. 
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Figure 5.4: The squeeze damping rate decreases with temperature with same scaling 
as /ns for temperatures below 4 e V. Squeeze suppresses the high temperature increase 
in the damping rate seen in /ns· The dot-dashed curve is the rotational pumping 
theory prediction for the squeezed plasma. 

While Crooks and O'Neil's theory predicts the correct scaling of /sq with tem­

perature, it again predicts that the squeeze perturbation should reduce the damping 

rate. For this data, the theory prediction is a factor of 30 lower than the measured 

/sq· 

5.3.4 Plasma Radius 

To measure the dependence of /sq on the plasma radius, Rp, I used the same 

method (described in Section 4.5.2) that I used to measure the dependence of /ns 

on Rp· That is, I expanded the plasma column while keeping the total number of 
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plasma. 

electrons, N, constant. Thus, as Rp increases, the density decreases. [Here, RP is 

defined as the radius of a uniform density column required to give the measured N 

using the density averaged over Pl.] 

As Rp is increased in this manner, both /sq and /ns increase, as shown in 

Figure 5.5. A factor of 4 increase in the plasma radius causes /sq to increase by 

nearly 2 orders of magnitude, which is even stronger than the dependence of /ns on 

Rp through rotational pumping. Presumably, /sq increases strongly with Rp because 

the radial electric fields created by the squeeze perturbation have a scale length of 

about a wall radius, Rw. Thus, the closer Rp is to Rw, the more the plasma should 

be influenced by the squeeze perturbation. The strong increase in /sq with Rp also 
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indicates that /sq probably decreases with density or is independent of density. The 

points in Figure 5.5 with the largest Rp have the lowest density. Thus, if /sq increased 

with density, this would tend to cancel the dependence on RP. 

The prediction of the theory for the data in Figure 5.5 is similar to those for 

Figures 5.2-5.4. The theory agrees with the measured damping rates without squeeze 

to within a factor of 2, but predicts that the squeeze perturbation should decrease 

the damping rate. Furthermore, the theory predicts that /sq should decrease at the 

largest Rp, in contradiction with the measured increase. 

5.3.5 Plasma Length 

I have not thoroughly investigated the scaling of /sq with the plasma length, 

LP. I have, however, measured /sq for a shorter plasma. Figure 5.6 shows the 

dependence of /sq on Vsq for a plasma confined in cylinders 13-14, which was the 

typical confinement region for the experiments described in Chapter 4. The length of 

this confinement region is Le = 4.953 cm; the squeeze voltage was applied to the 13 

cylinder, which is Lsq = 2.159 cm long. Surprisingly, with this geometry, the squeeze 

perturbation decreases the damping rate of them= 1 diocotron mode, which is the 

opposite of the increase observed for long plasmas. The space charge potential of 

this plasma was -65V, which is more negative than the applied Vsq· 

In contrast with the predictions for long plasmas, Crooks and O'Neil's theory 

correctly predicts that squeeze reduces the m = 1 diocotron mode damping rate 

for a short plasma. The theory predicts that /sq should be independent of Vsq for 

-Vsq < 3 V, and that /sq decreases strongly as Vsq becomes more negative than -8 V, 

in agreement with the measurements. The theory also predicts the magnitude of the 

/sq to within a factor of 2 for all but the strongest Vsq· The theoretical damping rate 

increases at the largest -Vsq for the same reason it increases in Figure 5.3; the plasma 

is being excluded from the squeeze cylinder and its overall length is decreasing. 
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Figure 5.6: Squeeze reduces the damping rate of a short plasma, as predicted by 
rotational pumping theory. The arrow indicates the plasma potential, <PP, with no 
squeeze. 

5.4 End Shape of Squeezed, Off-axis Plasmas 

I have found from the solutions of the 3-D Poisson-Boltzmann code that 

the squeeze perturbation decreases the plasma-averaged 8L, for both long and short 

plasmas. Here, as in Chapter 4, 8L is the amplitude of the azimuthal variation in 

the plasma length. Rotational pumping theory predicts that squeeze decreases the 

damping rate of the m = 1 diocotron mode because of this reduction in 8L. To 

understand why this is so, one must consider the the vacuum potential created by 

a finite length cylinder when a voltage is applied to it. In Figure 5.1, the vacuum 

potential in the grounded cylinder due to the applied voltages Vc and Vsq is most 
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Figure 5. 7: The squeeze perturbation cancels the curvature of the vacuum equipo­
tentials, giving 8L ""0 at p = 0.13 cm. However, the 8LB of individual electrons are 
still large. 

negative along the cylinder axis and goes to zero at the grounded wall. This difference 

in potential gives curvature to the vacuum equipotentials, resulting in a deformation 

of the plasma shape, 8L, when the plasma is off axis. In the squeeze cylinder, 

however, the vacuum potential from the applied voltage Vsq is least negative along 

the cylinder axis and goes to Vsq at the wall. This counteracts the change in the 

confining potential due to the applied voltage Vc, giving less curvature to the vacuum 

equipotentials. The result is a smaller 8L. 

This competition between the squeeze voltage and the confinement voltages in 

shaping the plasma is demonstrated in Figure 5. 7 and Figure 5.8. The radial profiles 

of the the length variation 8L(p) (Figure 5. 7) and plasma length L0 (p) (Figure 5.8) 
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are shown for the same plasma as in Figure 5.4 at a temperature of 0.2 eV. The length 

and length variation are defined by Eqs. 4.17 and 4.18. In Figure 5.7, the length 

variation 8L is shown by the solid curve. Near the plasma axis, 8L increases linearly 

with p, just as if there were no squeeze perturbation. This is because the electrons 

move to shield out the squeeze voltage from the plasma center. At larger p, however, 

8L decreases with p, actually becoming negative around p = 0.125 cm. Here, the the 

plasma is getting shorter, as shown by the solid curve of Lo in Figure 5.8. Electrons 

at p ,..__, 0.1 cm do not penetrate as far towards the confinement rings as electrons on 

axis. Hence, they are affected more by the squeeze voltage than by the confinement 

voltage, which reduces 8L. At the largest p, the length variation again increases with 
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p. At these radii, the plasma length is less than 1/2 its central value. Hence, electrons 

at p > 0.13 cm are entirely contained in the grounded cylinders, where the vacuum 

equipotentials from Vc and Vsq both have the same curvature. These electrons do not 

contribute much to the rotational pumping damping, however, because the density 

is so low at the plasma edge. 

The decrease in the curvature of the vacuum equipotentials caused by ap­

plying a squeeze voltage decreases the vacuum radial electric fields. (Here, "radial" 

is referenced to the trap axis.) This presumably acts to decrease the confining field 

contribution to the E x B rotation frequency WR. This, in turn, suggests a mecha­

nism by which the squeeze perturbation might suppress the increase in Ins with T 

at high temperatures which is shown in Figure 5.4. The thermal spread in E x B 

drifts discussed in Section 4. 7 comes about because higher energy electrons penetrate 

farther in to the confining potentials at the plasma ends. A decrease in the radial 

vacuum electric fields should then decrease this thermal spread, which in turn may 

decrease its contribution to the damping of them= 1 diocotron mode. 

5.5 Non-Maxwellian Distributions 

I have found numerical and experimental evidence that the squeeze pertu­

bation drives non-Maxwellian variations in the distribution of electron parallel en­

ergies, E11. The Crooks and O'Neil theory includes only dissipation caused by the 

collisional equilibraton of 711 and Tl., and thus ignores dissiaption caused by the 

relaxation of the E11 and El. distributions separately. If the squeeze perturbation 

drives non-Maxwellian distributions, this may explain why the Crooks and O'Neil 

theory underestimates the transport rate. 

The numerical evidence for non-Maxwellian distributions is shown in Fig­

ure 5.7. The dashed, dot-dashed, and dotted curves show the amplitude of the varia-
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tion in the bounce lengths 8LB(E11), for electrons with parallel energies of E11-=- 0.5 kT, 

1 kT, and 1.5 kT. (T = 0.2 eV in Figure 5.7.) Due to the finite Debye length, the 

cyclic variation in the turning points is not the same for electrons with different E11. 

For example, at p = 0.013 cm, 8LB for an electron with E11 = 1 kT is -0.010 cm, 

whereas 8LB for an electron with E11 = 1.5 kT is +0.004 cm. This indicates that 

cyclic variation in the parallel energy of the electrons does not maintain a Maxwellian 

distribution of E11· Conceivably, electron-electron collisions which attempt to relax 

the E11 distribution may cause enough dissipation to cause squeeze damping of the 

m = 1 diocotron mode. This dissipation is ignored by the Crooks and O'Neil theory, 

since that theory only uses the solid curve in Figure 5. 7, 8L, which is the E11-average 

of the 8LB(E11)· 

Experimental evidence that the squeeze perturbation causes non-Maxwellian 

E11 distributions is given by Figure 5.9, which shows that /sq does not decrease 

when the electrons become strongly magnetized, i.e. when re < b. This plot again 

shows measured squeeze damping rates, /sq, and damping rates without squeeze, 

/ns, plotted against Rv/ Rw. The data for Rv/ Rw < 0.2 apparently contradicts the 

data in Figures 5.5 and 4.14 and the rotational pumping theory; /ns decreases with 

Rv· The explanation of this contradiction is that the temperature was not held 

constant as this data was taken. The larger Rp have lower densities and thus less 

Joule heating due to anomalous transport. Thus, cyclotron cooling decreased T as 

Rp increased. This means that the temperature in Figure 5.9 decreases from left to 

right. The magnetic field for this data set was B = 40 kG, and the temperature of 

the leftmost points was 0.05 eV, giving rc/b ~ 5. Comparing to Figure 4.16 shows 

that /ns should decrease as T decreases. This decrease in /ns with decreasing T 

overwhelms the increase due to increasing Rp, giving the overall decrease with Rp 

shown in Figure 5.9 for Rv/ Rw < 0.2. The squeeze damping rate, however, does 
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Figure 5.9: Squeeze damping is not inhibited by strong magnetization. As RP 
increases, T decreases, which decreases /ns because re < b. However, the squeeze 
damping rate, /sq, is not effected. The reason for the increase in /ns at the largest 
Rp is not known. 

not decrease; the ratio /sq//ns goes from 5 to 100 as RP/ Rw increases from 0.06 to 

0.2. This indicates that /sq is not affected by the reduction in the equilibration rate, 

v .Lii i in the strongly magnetized regime. Hence, the collisions must cause dissipation 

by some other means than equilibrating TJ. and 711· This can only occur if the E11 

distribution is non-Maxwellian. Note that in the strongly magnetized regime, 3 body 

collisions, rather than binary collisions, are the primary E11 relaxation mechanism. 

Three body collisions are discussed in Section 4.6.2. 

Conceivably, the lack of dependence of /sq on v .Lii could mean that squeeze 

damping does not depend on collisions. However, for the leftmost points in Fig-
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ure 5.9, vl. 11 ~ 3.3 x 105 sec-1 is over one-half the mean bounce frequency fB· This 

high collisionality argues against any non-collisional mechanisms such as resonant 

particles. 

I do not know why /ns increases at the largest Rp in Figure 5.9. The very 

strong dependence on Rp in this regime indicates that Rp is breaking some threshhold. 

One explanation is that the edge of the density profile is reaching to the wall, which 

could cause an increase in the damping rate. 

5.6 Comparison with Theory 

The dot-dashed curves in Figures 5.2-5.6 show the predictions of the adia­

batic rotational pumping theory. These predictions clearly do not agree with the 

data. Including the contributions of the resonant particle rotational pumping theory 

discussed in Section 4.6.1 does not improve the agreement. Most of the data pre­

sented here is for plasmas with rotation frequencies, f R = wn/27r, smaller than the 

electrons' mean bounce frequency fB, giving a negligible resonant particle contribu­

tion. Those plasmas where fR > fB are too collisional for resonant particles. 

Fine compared his measurements to a theory of "beat-wave" damping by 

Crawford and O'Neil [6, 5]. From the perspective of this theory, the squeeze per­

turbation is an an azimuthally symmetric (m = 0), zero frequency wave in the 

z-direction. Its lowest wavenumber component is kz = 7r / Lp. The diocotron mode is 

an m = 1, kz = 0 wave traveling in(} at frequency wd. The beating of these two waves 

makes an m = 1, kz = 7r / Lp wave with frequency wd. Crawford and O'Neil then 

assume that the electrons travel in orbits unperturbed by this beat wave; i.e. they 

assume the plasma is on axis and that its shape is not affected by the squeeze per­

turbation. Certain electrons will then have orbits which are resonant with the beat 

wave. These electrons absorb energy from the beat wave through Landau damping, 
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which damps them= 1 diocotron mode mode. 

The beat-wave model probably oversimplifies squeeze damping. The assump-

tion that the electrons travel along "unperturbed orbits" is not consistent with ex-

perimental results. My numerical calulations of the 3-D plasma density profile when 

a squeeze voltage is applied show that the squeeze potential is largely shielded out 

of the bulk of the plasma by large perturbations to the plasma shape, as shown by 

Figure 5.1 and Figure 5.8. This means that the squeeze region is inaccessible to 

electrons with low enough energy. 

My results are do not disprove Crawford and O'Neil's theory, but do shed 

some doubt on it. Equation 6.3 in Fine's thesis states that the beat-wave damping 

theory predicts that /sq scales as 

~~ Jn [ 1 (JR)2] 
/sq ex B JB exp -2 JB ' (5.3) 

where I have substituted 7r / Lp for kz. The scaling with Jn disagrees with my data. In 

Figure 5.5, JR is smaller than JB and decreases as Rp increases. The theory predicts 

that /sq should decrease, but instead it increases. Note also that some of my data 

is in a parameter regime that precludes resonant particles. As noted at the end of 

the previous section, the data in Figure 5.9 was taken on a highly collisional plasma. 

Hence any resonances would be washed out by collision.s, and Crawford and O'Neil's 

theory should not apply. 



Appendix A 

Non-adiabatic Compressional 
Heating 

In this Appendix, I present data on plasma heating caused by modulating the 

plasma length. The plasma length is modulated by applying azimuthally symmetric, 

oscillating voltages to the confinement cylinders. I find that the most efficient heating 

occurs when the frequency of the applied voltage f mod is near the mean bounce 

frequency fB, i.e. when the applied voltage oscillates non-adiabatically. For f mod ~ 

fB, the heating rate strongly increases with J mod and strongly decreases with fB· The 

scalings of the heating rate with !mod and fB show some agreement with a heating 

rate derived from the Crooks and O'Neil resonant particle rotational pumping theory 

[7]. This agreement implies that resonant particles may enhance rotational pumping 

transport in plasmas that are not too collisional. 

In taking the data in this Appendix, the plasma was confined as shown in 

Figure 2.2. The length of the confinement region is Le = 4.953 cm, and the con­

finement voltage was Vc = -100 V. The unperturbed plasma length was Lp = 3.73 

cm. This length was modulated by applying a sinusoidally varying voltage to the 

1.4 cm 14 cylinder. The plasma density was n = 2.7 x 109 cm-3
, the plasma radius 

was Rp/ Rw = 0.06, and the magnetic field was B = 20 kG. The background Joule 

heating rate for these plasma parameters was negligible compared to the heating rate 
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Figure A.1: Final temperature after 30 msec of modulating the plasma length plot­
ted against modulation frequency. The intial temperature was 0.32 eV. The dotted 
line shows vl. 11 and the dashed line shows fB· The small increase in temperature when 
f mod becomes larger than v Lii is due to adiabatic, collisional heating. Non-adiabatic 
heating Umod"" fB) is much more effective. 

from the applied voltage. Similarly, cyclotron radiation was negligible in these exper-

iments, as the radiation time, 'Trad = 1 sec, was much longer than the measurement 

times. 

Figure A.1 shows the plasma temperature, T, after modulating the plasma 

length for 30 msec, plotted against the modulation frequency, !mod· The dotted 

line shows the collisional equilibration rate v Lii as a function of temperature, and the 

dashed line shows fB· (For the dashed and dotted lines, temperature is the dependent 

variable and frequency is the independent variable.) The measured temperature in-
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creases slightly with the modulation frequency for !mod = 10 kHz to !mod = 200 kHz, 

and is independent of of the modulation frequency for 200 kHz < !mod < 500 kHz. 

This is consistent with Beck's [2, 1] measurements of plasma heating caused by 

adiabatically modulating the plasma length. Here, "adiabatic" means that the mod­

ulation frequency is small compared to the thermal electron bounce frequency, fB· 

The modulation in Lv causes a modulation in the parallel temperature, 711; collisions 

tend to equilibrate Tl. with 711, causing an irreversible increase in both. Beck showed 

that the heating rate is given by 

(A.l) 

where (3 = 27r f mod/3v J..ll and 8L is the amplitude of the length variation. When 

f mod ~ v J..ll, the fraction on the right equals 1 and the heating rate is independent of 

!mod· This collisional equlibration between Tl. and 711 is the same mechanism which 

causes the dissipation in rotational pumping. 

The plasma heats much faster when the plasma length is modulated non-

adiabatically, as shown on the right hand side of Figure A.l. As f mod is increased 

towards fB, the measured temperature rapidly increases with f mod· At f mod= 7 MHz, 

the increase in temperature is 250 times the adiabatic increase. I used this highly 

efficient heating method to balance cyclotron cooling in many of the experiments 

described in this thesis. 

Note that while rotation of an off-axis plasma modulates the plasma length, 

causing rotational pumping heating and transport, modulating the plasma length 

with oscillating applied voltages does not cause transport, even if the plasma is off-

axis. This is because the applied voltages are not in phase with the plasma rotation. 

Consequently, any effect produced by the applied voltages is quickly phased mixed 

by the plasma rotation, so that the heating by the applied voltages is azimuthally 

symmetric around the plasma axis. 

-- -- ----- --~---------~--------------------___. 
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Figure A.2: Increase in temperature after 30 msec of modulating the plasma length 
plotted against the modulation voltage. The change in temperature scales as 11~od 
for small 11mod· When the increase in temperature makes fB larger than !mod, the 
dependence on 11mod decreases. 

The dependence of the temperature increase on the amplitude of the mod­

ulation voltage is shown in Figure A.2. The modulation voltage was applied for 30 

msec at frequency !mod = 5 MHz. At small amplitudes, the change in temperature is 

proportional to 11~od· This scaling indicates that the non-adiabatic heating presented 

here is not a form of "cascade heating" [38]. Cascade heating occurs when a pure 

electron plasma is allowed to freely expand along the magnetic field. The unbalanced 

space charge electric fields accelerate the electrons at the end of the plasma as the 

plasma expands. The plasma temperature increases when these electrons collision-

ally equilibrate with the rest of the plasma. The increase in thermal energy is equal 
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to the decrease in electrostatic energy, and so is first order in Vmod ex 8L, which is not 

consistent with the V~od scaling seen here. Furthermore, the variation in the plasma 

length in these experiments is too small to allow the plasma to freely expand. That 

is, v/8L ~ fmod, so that space charge electric field at the end of the plasma is always 

balanced by the confining fields. 

The arrow in Figure A.2 indicates the point at which the temperature increase 

is as large as the original temperature. As the plasma is heated further, the increase 

in temperature depends less strongly on Vmod, indicating that the applied voltage is 

heating the plasma less efficiently. Comparing the temperature increase in Figure A.1 

to that in Figure A.2 indicates that a smaller Vmod should be used in order to obtain 

the dependence of the heating on !mod· Figure A.3 shows the result of using a smaller 

Vmod· This data was taken the same way as that in Figure A.1 except that the 2 

symbols in Figure A.3 correspond to Vmod = 0.14 and 0.049 Yrms· Using these smaller 

voltages, and increasing fmod all the way to 50 MHz reveals a peak in the measured 

temperature. This suggests that !mod is resonant with some motion of the electrons. 

The width of the peak and its location indicate that the heating is not due to the 

excitation of a plasma mode; these modes are observed to have narrow resonances 

and mode frequencies of at least 10 MHz for these plasma parameters. Rather, !mod 

is probably resonant with the electron's bounce motion, as indicated by the dashed 

line. The width of the peak is consistent with the thermal spread in electron bounce 

frequencies. 

The peak in Figure A.3 suggest a resonance between !mod and the bounce 

motion of the electrons. However, there are two problems with this data. First, it 

does not give the dependence of the heating rate on fB/ !mod· This is because the 

temperature of the plasma changes over the 30 msec measurement period, which 

changes fB· Also, the coaxial cables which carry the modulation voltage are termi-
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Figure A.3: Final temperature after 30 msec of heating plotted against the mod­
ulation frequency. Heating peaks where f mod rv fB· These data sets each had a 
smaller Vmod than the data in Figure A.I. 

nated only with the capacative load of the confinement cylinders. Consequently, at 

frequencies above about 5 MHz, the voltages on the cylinders are frequency depen-

dent and may have been different than the voltages measured outside the cryostat. 

Experimental testing and theoretical calculation show that for f mod ::; 10 MHz, this 

difference is at most a 25% attenuation of Vmod· However, at higher frequencies the 

transmitted Vmod exhibits large variations with f mod· 

The solution to these problems is to measure the instantaneous heating rate 

as a function of fB at a fixed fmod· To do this, I measured T as a function of time at 

4 different frequencies, as shown in Figure A.4. The 4 symbols correspond to fmod 

= 2, 3, 4, and 10 MHz; the modulation voltage amplitude was Vmod = 0.566 V rms· 
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Figure A.4: Evolution of temperature at !mod = 2, 3, 4, and 10 MHz. 

I fit this data with slightly smoothed cubic splines and evaluated dT / dt at each 

data point. The 2 MHz data is too noisy to get a smooth spline fit, so I calculated 

dT / dt at 4 different points by hand. The measured heating rates are plotted against 

the scaled thermal bounce frequency, fB/ !mod, in Figure A.5. At each frequency, the 

heating rate decreases strongly with fB when the bounce frequency is larger than the 

modulation frequency. Furthermore, at modulation frequencies of 4 and 10 MHz, the 

maximum dT / dt is at f B ~ f mod. The heating rate also appears to increase strongly 

with f mod at fixed fB/ !mod· This effect is too strong to be explained by the frequency 

dependence of transmission of the applied voltage through the coaxial cables. 

The 4 theory curves in Figure A.5 show heating rates derived from Crooks 

and O'Neil's resonant particle rotational pumping theory for the 4 experimental 
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Figure A.5: Heating rate as a function of fB/ f mod for J mod = 2, 3, 4, and 10 MHz. 
The heating rates peak at !mod ~ fB, and then decrease strongly with !mod/ fB· 
The heating rate also increases strongly with J mod at a given !mod/ fB· The curves 
show the predictions of resonant particle theory. The dotted, solid, dashed, and 
dot-dashed curves correspond to 2, 3, 4, and 10 MHz, respectively. 

!mod· Here, the plasma length is modulated by the applied voltages, rather than the 

rotation of the plasma through asymmetric potentials. Using Equation 4.23, this 

theory predicts 

dT = Ji2s;3 f3 (0L)2 
dt 3 me mod (A.2) 

where me is the electron mass. The amplitude of the plasma length modulation was 

estimated, using oL ex Vmod and the data in Figure A.1, to be oL/ LP = 0.002. The 

scalings of the predicted heating rate with fB and !mod both show some agreement 

with with the 2, 3, and 4 MHz data for fB 2: fmod· The magnitude of the measured 
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rates are 2 to 5 times the predicted rates, but this could easily be a systematic error 

in the calculation of 8L. However, the theory predicts that the maximum heating 

rate is for !mod ~ 2fB, in contrast with the peak in the data at !mod ~ fB· Nor is 

the dependence of the 10 MHz data on fB well predicted by the theory. Thus, this 

data is inconclusive is confirming the Crooks and O'Neil resonant particle heating 

theory. 

Note that in deriving Equation A.2, I divided WB = 2x fB by 2 in Equa­

tion 4.23. In the resonant particle rotational pumping theory, the lowest order res­

onance is WR = 2wB because the asymmetric potentials are at both ends of the 

plasma, which doubles the effective bounce frequency. Here, the modulation voltage 

is applied at only one end, so the resonance condition is f mod = fB· 

As noted in Section 4.6.1, I do not observe any resonant particle enhance­

ment of rotational pumping transport. This is probably because CV plasmas are too 

collisional, when JR ,...., fB· In this regime, the collision rate is the same order of mag­

nitude as the bounce frequency, and any bounce-rotation resonances are destroyed 

by collisions. The data in Figure A.5, however, suggests that resonant particle rota­

tional pumping may be important in plasmas where the collision rate is small when 

fR ,...., fB· The mechanism which causes the adiabatic heating shown in Figure A.1 

is the same as that which causes dissipation in adiabatic rotational pumping. Thus, 

the mechanism which causes the much faster non-adiabatic heating may cause much 

faster dissipation and hence much faster rotational pumping transport. 



Appendix B 

End Shapes of Off-Axis Plasma 
Columns 

B.1 Overview 

In this Appendix, I present analytical and numerical calculations of the end 

shapes of plasma columns which have been displaced from the trap axis. As shown 

in Figure 4.1, the length of a displaced plasma column is not azimuthally symmetric 

around the plasma axis. Here, as in Chapters 4 and 5, I define 15L(p) as the amplitude 

of the azimuthal length variation at a distance p from the plasma axis. I find that 

15L is well-approximated by an analytical estimate for wide and/or hot plasmas. 

However, perturbation of the space charge fields increases 15L in cold, narrow plasmas. 

The end shapes of these plasmas must be calculated numerically. 

In Section B.2, I estimate 15L(p) for a uniform density, "well-confined" plasma. 

By well-confined, I mean that the magnitude of the space-charge potential of the 

plasma, </Jp, is small compared to the confining potential Vc. The calculation of 15L 

gives the length variation due to the curvature of the confining and image charge 

potentials, but neglects changes in the space charge fields caused by the change in the 

plasma end shape. The estimated 15L is proportional to both p and the displacement 

D. 

In section B.3, I compare this estimate to numerical calculations of 15L for 
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well-confined, uniform density plasmas. I find that while the estimate is a good 

approximation to 8L for wide and/or hot plasmas, it underestimates 8L for cold, 

narrow plasmas. In these plasmas, the change in the plasma end shape creates space 

charge fields which further increase 8L. 

In section B.4, I present numerical calculations of 8L for 2 experimental 

plasmas. I find smaller 8L for these plasmas than for the simulated plasmas because 

the experimental plasmas are not as "well-confined." Weakening the confinment, by 

increasing the temperature or decreasing Vc, further decreases 8L. Finally, I show 

that 8L for ill-confined plasmas can depend nonlinearly on p. 

B.2 Estimate of 8L 

The zero order contribution to 8L comes from the curvature of the vacuum 

equipotentials. If a plasma is confined entirely in the grounded cylinders, the con­

fining force on the plasma is weakest at the walls and strongest on the trap axis. 

Hence, a plasma which is displaced from the trap axis is longer near the wall than 

near the axis. An estimate of this length difference can be derived by assuming that 

the plasma has zero temperature and that a tube of plasma always terminates on 

the same confining equipotential as it E x B drifts around the plasma axis. 

Consider 2 half-infinite cylinders, one grounded and one held at voltage Vc, 

as shown in Figure 4.1. Defining z = 0 as the boundary between the 2 cylinders, the 

vacuum potential in the grounded cylinder from Vc can be written as 

V( ) 
= V ~ exp(-joiz/ Rw) Jo(joir/ Rw) 

r, z c L.J . J ( . ) 
i=l }Oi 1 }Oi 

(B.1) 

where J0 and J 1 are Bessel functions of the first kind, and joi is the ith zero of Jo. 

Now consider a half-infinite plasma confined in the grounded cylinder. I 

define a "well-confined" plasma as one whose end is so far from the negatively biased 

cylinder that the confining potential in the plasma is well described by the first term 
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in the summation in Equation B.l, i.e. 

V( ) 
~ uexp(-io1z/Rw) Jo(io1r/Rw) 

r,z Ve • J (. ) · 
)Ol 1 )01 

(B.2) 

In this case, the confining equipotentials are described by the equation 

Zeq(r) = ~w ln[Jo(io1r/ Rw)] +constant 
)Ol 

(B.3) 

Assuming r ~ Rw, I can approximate ln[Jo(io1r/Rw)] by -(jo1r/2Rw)2• The ampli-

tude of the azimuthal variation in the length of a tube of plasma which terminates 

on the equipotential is then given by gives 

1 ~1 D 
8L(p) = 2 [zeq(D - p) - Zeq(D + P)] = 2 Rw p, (B.4) 

where D is the plasma displacement and p is the distance from the plasma axis. 

Note that for a finite length plasma, 8L should be doubled because the plasma has 

2 ends. 

This estimate of 8L neglects the image charge potential and plasma tern-

perature. A slightly more complicated model takes these effects into account. This 

model assumes that the the plasma space charge potential </>p and the image charge 

potential <Pi at the end of the plasma are proportional to their value at the plasma 

center, where the proportionality factor, F, is a funtion of D and p only. Thus, 

conservation of energy defines the turning point of a thermal electron, ZTp(r, 0), by 

1 . 
2,kT(r, 0) - e[</>p(r, 0, oo) + </>i(r, 0, oo )] = 

-eF(p, D)[</>p(r, 0, 00) + cPi(r, 0, 00 )] - e V(r, ZTP) (B.5) 

where the left-hand side is the energy of a thermal electron at z = oo and the right­

hand side is the energy of the electron at its turning point. The vacuum potential 

Vis defined by Equation B.2. The plasma potential at z = oo of a uniform density 

plasma column displaced from the trap axis is given by 

(B.6) 
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where NL is the number of electrons per unit length, and RP is the plasma radius. 

Similarly, the image charge potential is 

(B.7) 

Combining Equations B.5-B.7 and solving for ZTP gives 

( O) __ Rw l [· J (. )kT/2- e(l - F)(</>p +</Ji)] 
ZTP r, - . n Joi 1 )01 v T (. /R ) . )01 -e c Jo Jo1r w 

(B.8) 

Defining the length variation by 

1 
8L(p) = 2 [zTp(D- p,7r/2) - ZTP(D + p,7r/2)], (B.9) 

gives 

8L(p) = ~w x 
2Jo1 

l {kT/2- e(l -F)[</>p(p) + </>i(D + p,7r/2)] Jo(io1(D- p)/Rw)} (B lO) 
n kT/2 - e(l - F)[</>p(p) + <Pi(D- p,7r/2)] Jo(io1(D + p)/Rw) . . 

Assuming that D ~ Rw and p ~ Rw, the image charge potential can be approxi-

mated by 

(B.11) 

and the Bessel functions can be approximated by 

. (jo1 D ± p) 2 

Jo(Jo1(D ± p)/Rw) ~ 1- 2~ (B.12) 

Combining these equations and using the approximation ln(l + x) ~ x, gives, to first 

order in D and p, 

(
k 2hm ) 

f;L(p) = 2- 1-2ln(Rw/Rp) + [2.Av 2 /R~]/[l -F(p,D)] 
(B.13) 

where 2..Xv 2 
/ R; = kT /2N Le2. The first term in this equation is the same as Equa­

tion B.4. The decrease in fJL from the second term comes from the image charge 
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potential, which tends to cancel out the plasma potential most strongly near the 

wall. 

This derivation of f;L is similar to a derivation by Peurrung and Fajans [50], 

except that they assume the plasma is zero temperature and that the end of the 

plasma is flat. Peurrung and Fajans defined an end "slant coefficient" as Cs = 

fJL/(D/ Rw)/ p. For a zero temperature plasma, Equation B.13 gives the same slant 

coefficient as Peurrung and Fajans', without the flat end assumption. However, for 

the finite temperature plasmas discussed in the next section, I must assume the end 

is flat in order to use F(p, D) = 1/2 in Equation B.13. 

B.3 Numerical Calculations of 8L for Well-Confined 
Plasmas 

As noted in Section 4.5.2, the value of fJL(p) obtained from Equation B.13 

does not always agree with the f;L calculated from the 3-D Poisson-Boltzmann code. 

Thi_s discrepancy occurs partly because experimental plasmas are not always "well-

confined", and partly because the model in Section B.2 does not take into account 

changes in the plasma space-charge potential when a plasma is displaced from the 

trap axis. In this section, I present numerical calculations of f;L for simulated, well-

confined plasmas. 

All of the simulated plasmas have uniform temperatures and z-integrated 

density profiles, i.e. T and nz(p) are constant out to the plasma radius RP. The 

plasmas are also "ideally well-confined." This was accomplished by leaving the con-

fining potentials out of the solution to Poisson's equation. The plasma and image 

charge potentials were numerically calculated assuming the given electron distribu-

tion was in an infinite length, grounded cylinder. A confining potential of the form 

. ) { [ . Z + Lc/2] [. Z - Lc/2]} V(r, z) =Ve lo(Jo1r/ Rw exp -Joi Rw +exp Joi Rw ' (B.14) 
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was then added to the calculated potential in order to calculate a new electron 

Boltzmann distribution along each magnetic field line. (Here, as in the remainder 

of this Appendix, z = 0 is at the center of the plasma and Le is the length of the 

"confinement region.") This is the form of the confining potential seen by a plasma 

which is far from the 2 confining cylinders, i.e. only the first term in Equation B.l 

contributes to Equation B.14. The Poisson and Boltzman equations were iteratively 

solved in this manner to obtain a self-consistent equilibrium, n( x, y, z) and </>( x, y, z). 

The plasma length along each field line, L, and the length variation, 8L, were 

then defined as in Equations 4.16 and 4.17, i.e. 

L(x,y) 

8L(p) 

nz(x, y )jn(x, y, z = 0), 

1 
2"[L(p + D, 0) - L(p - D, O)]. 

I then defined the slant coefficient as 

C = Rw dd 8L(p) 
s - D p p=O 

(B.15) 

(B.16) 

(B.17) 

Thus, Cs is the normalized slope of 8L at p = 0. For 8L ex: p, this definition of the 

slant coefficient is the same as Peurrung and Fajans'. 

To numerically calculate the dependence of Cs on the plasma parameters, 

I kept the plasma density and length constant by adjusting Vc. Unless otherwise 

noted, all plasmas simulated for the data in this section have z-integrated density 

nz/ Le = 107 cm-3 , density n ~ 1.3 x 107 cm-3 and length Lpj Rw ~ 7. Except for 

Figure B.1, all of the plasmas have D j Rw = 0.1 or D j Rw = 0.125. The dependence 

of the numerically calculated Cs on plasma temperature, radius, and displacement 

is discussed below. Note that changing the plasma temperature is equivalent to 

changing the density. That is, if I multiply T by 2, the Poisson and Boltzmann 

equations give the same equilibrium electron distribution as if I had divided nz and 

Vc by 2. 
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Figure B.1: The slant coefficient is independent of the plasma displacement. The 
solid line shows the estimate from Equation B.13. 

B.3.1 Displacement 

The slant coefficient is independent of the displacement of the plasma column, 

as shown by Figure B.l. This plasma had radius Rp/ Rw = 0.6 and a temperature 

T = 1 e V. As D / Rw increases from 0.02 to 0.4, the slant coefficient Cs increases less 

than 1%. The solid line in Figure B.1 shows the prediction of the Equation B.13, 

which is about 15% smaller than the numerical value. 

B.3.2 Temperature 

The slant coefficient for this plasma is also nearly independent of tempera­

ture, as shown in Figure B.2. As T increases by a factor of 40, Cs for RP/ Rw = 0.6 
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Figure B.2: The slant coefficient is independent of the plasma temperature for wide 
plasmas, but decreases with temperature for narrow plasmas. The solid line shows 
the estimate from Equation B.13. 

increases only about 15%. This increase is predicted by Equation B.13, as shown 

by the solid curve, even though the predicted values are only about 85% of the 

numerical values. The kinetic energy of the electrons increases with temperature, 

which makes the azimuthal asymmetry of the image charge potential becomes less 

significant. The estimate for the narrower plasmas is nearly the same as for the 

plasma with Rp/ Rw = 0.6. However, the numerically calculated slant coefficient of 

the narrower plasmas has a strong temperature dependence. For Rp/ Rw = 0.16, Cs 

decreases from 2.5 to 1.4 as T increases from 1 to 20 eV. This is probably due to a 

decrease in space charge effects as the Debye length increases, as discussed below. 
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Figure B.3: Equation B.13 correctly predicts the slant coefficient of wide plas­
mas, but underestimates it for narrow plasmas. The discrepancy decreases as the 
temperature increases. 

B.3.3 Plasma Radius 

As is evident from Figure B.2, the slant coefficient depends strongly on 

Rp/ Rw. This is better shown by Figure B.3. At large Rp/ Rw, the numerical Cs 

at any given temperature agree fairly well with the prediction of Equation B.13, but 

as Rp/ Rw decreases, the numerical values of Cs start to increase, diverging from the 

estimate. Finally, at even smaller Rp/ Rw, the numerical Cs start to decrease again. 

The point at which this decrease occurs depends on temperature; the lower the tern-

perature, the smaller the value of Rp/ Rw at which Cs starts decreasing. For small 

enough temperature or large enough RP, the slant coefficient is nearly independent 
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of temperature for all Rp. 

The lowest temperature points in Figure B.3 give the same dependence of 

Cs with Rp/ Rw as Peurrung and Fajans found numerically for a zero temperature 

plasma, though my data has less noise. Peurrung and Fajans speculated that the 

anomalous increase in Cs at small Rp/ Rw occurs because the end of the plasma 

becomes more rounded as Rp decreases. This reasoning is valid, since the anomalous 

increase is presumably due to the change in the space-charge potential caused by 

the displacement of the plasma column. The axial component of the space-charge 

electric fields at the plasma end is larger for plasmas with rounded ends than plasmas 

with flat ends. Therefore, changing the space-charge electric fields causes a larger 

8L in plasmas with rounded ends than in those with flat ends. This explains why Cs 

decreases with Rp at large T; hotter plasmas have flatter ends [48]. 

B.4 Numerical Calculations of 8L for Ill-Confined 
Plasmas 

Near the boundary between a confining cylinder and a grounded cylinder, the 

vacuum equipotentials have less curvature than well within the grounded cylinder, 

as is shown in Figure 4.12. This can cause Cs to deviate from the behavior shown 

above for well-confined plasmas. 

Figure B.4 shows Cs as a function of temperature calculated for the data 

in Figure 4.8. The two different symbols correspond to two different confinement 

potentials. The "ill-confined" data points show Cs for a plasma confined by the 

actual confinement potentials used in the experiment, whereas the "well-confined" 

points show Cs for the same plasma confined by potentials of the form given by 

Equation B.14. The solid line shows the estimate of Cs for a well-confined plasma 

from Equation B.13. At low temperatures, Cs for the ill-confined plasma is 1.3 times 
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Figure B.4: The slant coefficient for a narrow plasma decreases with temperature 
because the Debye length increases. The slant coefficient of an ill-confined plasma 
also decreases because it becomes more ill-confined. The solid line shows the estimate 
from Equation B.13. 

the estimate, indicating that space charge effects are acting to increase 8L. The 

slant coefficient of the well-confined plasma is twice that of the ill-confined plasma, 

indicating that the well-confined vacuum equipotentials have more curvature than 

those in the actual experiment. At temperatures above 2 eV, the slant coefficient 

of both plasmas decreases, indicating that this decrease is mainly due to a decrease 

in space charge effects. However, Cs decreases more, relative to its low temperature 

value, for the ill-confined plasma than for the well-confined one. This is because the 

high energy electrons in the experiment are penetrating farther into the confining 

potentials towards the end cylinders, where the vacuum equipotentials have less 
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Figure B.5: The slant coefficient for an ill-confined plasma decreases with IVcl be­
cause the vacuum equipotentials have less curvature near the confinement boundary. 
At small enough IVcl, the center of the plasma is inside the confining cylinder, where 
the equipotentials have opposite curvature, giving negative Cs. The solid line shows 
the estimate from Equation B.13. 

curvature. 

Figure B.5 shows that the slant coefficient of an ill-confined plasma decreases 

when the magnitude of the confining potential is decreased. These slant coefficients 

were calculated for the data in Figure 4.11. The arrow indicates the plasma potential 

</>p when Vc = -150 V. As Vc becomes less negative, Cs decreases because the 

end of the plasma extends further into the low curvature region of the vacuum 

equipotentials. At Vc = -50V, the confining potential at the boundary between 

the grounded and end cylinders is about equal to the plasma space charge potential 
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Figure B.6: The center of this ill-confined plasma is inside the confining cylinder, 
while the edge is well into the grounded cylinder. This gives a negative 8L near p = 0 
but a large, positive 8L at the plasma edge. 

of -25 V. The confining equipotentials at this boundary have no curvature, so the 

slant coefficient is zero. As J Vc I is decreased further, the end of the plasma extends 

into the confining cylinder, where the curvature of the confining equipotentials is the 

opposite of the curvature in the grounded cylinder. This changes the sign of Cs. 

The z dependence of the curvature of the vacuum equipotentials does more 

than just change Cs. It can also give 8L a nonlinear dependence on p. Figure B.6 

shows 8L(p), scaled by the displacement D, at Vc = -25V for the same plasma as in 

Figure B.5. Near p = 0, 8L decreases strongly with p, giving a slant coefficient of 

Cs = -8.0. However, 8L increases strongly with p for pf Rw > 0.06. This nonlinear 

dependence on p occurs because the plasma end is very rounded. The center of 
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the plasma extends into the confining cylinder, but the edges are still relatively well 

confined within the grounded cylinder. This sort of nonlinear 8L is included in the 

calculation of /rp in Chapters 4 and 5 by numerically integrating Equation 4.21 over 

the plasma; whereas the calculation of /est from Equation 4.22 assumes that dL exp. 



Appendix C 

Radiation Limit to Plasma 
Lifetime 

In this Appendix, I consider the loss of angular momentum from a pure elec-

tron plasma by cyclotron radiation, and derive an estimate of the rate of expansion of 

the plasma column due to this process. This rate sets an upper limit on the plasma 

confinement time, as shown in Figure 3.1. 

The total angular momentum of a pure electron plasma, P8 , is given by 

Equation 3.1, which is reproduced here: 

(C.1) 

In Section 3.2, the first term, which is the inertial component, was neglected because 

it is much smaller than the electromagnetic component.· Here, I will keep both terms. 

Consider a long, azimuthally symmetric plasma column which is centered 

on the trap axis. Assuming the plasma is uniform over its length Lp, the angular 

momentum can be written 

(C.2) 

where the E x B drift velocity, VE, is given by 

( ) Er(r) 47rec lr 'd 1 ( ') 
VE r = ---c = -- r r n r , 

B B o 
(C.3) 
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and the diamagnetic drift velocity, vn, is given by 

vn(r) = _ 1 o(nTJ_) 
nmeWe 01' 

(C.4) 

where We is the cyclotron frequency and TJ_ is the perpendicular temperature. Solving 

the integral in Equation C.2 gives 

_ l [ mec
2 

HJ_/N 2 2 l Po - -
2

NmeWe 2NL-B2 + 4 2 + Rw - (r ) , 
mewe 

(C.5) 

where NL = N/ LP is the number of electrons per unit length, and HJ_ is the total 

perpendicular thermal energy, given by 

(C.6) 

The first term in Equation C.5, which is due to VE, is a constant, provided that N 

and Lp are constant. The R~ term, due to image charges, is also a constant. Thus, 

Po can change only if HJ_ or (r2
) changes. 

The perpendicular energy of the electrons decreases through cyclotron ra­

diation. Assuming that the wavelength of the radiation is short compared to the 

dimensions of the trap, the electrons radiate as m = 1 electric dipoles in free space 

[44]. The ratio of angular momentum to energy radiated by a dipole oscillating at 

frequency We is 1/we [32]. Thus, if the plasma is optically thin, the loss rate of angular 

momentum from the plasma due to radiation is given by 

(C.7) 

where Trad is the radiative cooling time for a single particle when the perpendicular 

and parallel temperatures are collisionally coupled. This assumes that the walls of 

the trap are sufficiently resistive to absorb the radiation before the optically thin 

plasma absorbs it. 

If the plasma is not externally heated, HJ_ quickly approaches zero. In that 

case, the loss of angular momentum through cyclotron radiation is negligible com-

pared to the total angular momentum. However, if the plasma is actively heated 
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by the application of an azimuthally symmetric voltage, the competition between 

heating and cyclotron cooling keeps HL constant. The total loss of angular momen­

tum due to radiation can then be many times the thermal component of Po. The 

azimuthally symmetric heating voltage increases the parallel energy of the electrons 

but not their angular momentum. Collisions transfer this parallel energy to the cy-

clotron motion of the electrons, which increases H 1-. The collisions must conserve 

angular momentum, so that the increase in the thermal part of Po must be accom­

panied by an increase in (r2
). Ignoring other transport processes, if HL is constant, 

the rate of increase of (r2 ) is given by 

d(r2
) = 

6 
HL/(Nmew~), 

dt Trad 
(C.8) 

which means that (r2
) increases linearly with time. Defining Tm as the time required 

for (r2 ) to double gives 

(C.9) 

For a plasma of uniform density and temperature with radius Rp, this equation 

becomes 

Tm = _!__ (Rp)
2 

Trad, 
12 re 

(C.10) 

where re= jkTL/me/we is the mean cyclotron radius. 



Appendix D 

Damping of m > 2 Diocotron 
Modes by Rotational Pumping 

Rotational pumping presumably damps the m ~ 2 diocotron modes just as 

it does the m = 1 mode. In this Appendix, I derive an estimate of the rotational 

pumping damping rate for them~ 2 modes. I find that, for Rp ~ Rw, the damping 

rate for all m numbers is nearly identical. 

Consider a long (Lp ~ Rw) plasma column which has uniform density and 

temperature. In the diocotron mode frame, the diocotron mode is simply a stationary 

distortion of the plasma cross-section. The radial distance from the axis to the surface 

of the plasma, Rs, can be described by 

Rs(B) = (l + a~/8) 112 (1 - a; cosmO), (D.l) 

where am ~ 1 is the amplitude of the mode and Rp is radius of the column when 

am = 0. The E x B orbits of the electrons are likewise distorted. To lowest order in 

am, the radial excursions of an electron caused by an m ~ 2 diocotron mode can be 

described by 

am ) rm(B) = ro(l - 2cosm0, (D.2) 

where am ~ 1 is the amplitude of the mode and r0 is the mean radial location of 

the electron. 
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The radial excursions of the electrons cause the length of a tube of plasma 

to vary as it E x B drifts around the plasma axis. This length variation can be 

described by 

L(ro, t) = Lo(ro) - 8L(ro) cos mwRt, (D.3) 

where 8L ~ L0 and wR(ro) is the rotation frequency of the plasma in the diocotron 

mode frame. Inserting Equation D.2 into Equation B.3 gives (including both ends 

of the plasma) 

(D.4) 

where K = }01 ~ 2.4. 

Equation 4.12 gives the rotation-averaged rate of change of the z-integrated 

thermal energy density of the tube of plasma as 

(D.5) 

Integrating this equation gives the rate of change of the thermal energy of the plasma, 

i.e. 

dHT 271" {Rp 3 dT 1 2 R: 2 

dt = N lo ro dro 2nzdt = 6K vJ.llT L6 am, (D.6) 

where HT is the thermal energy per electron, and where Lo is assumed to be uniform 

over the plasma. 

Conservation of energy stipulates that the increase in HT must come from a 

decrease in the electrostatic energy of the plasma, H,p, through Joule heating. The 

electrostatic energy per electron is given by 

The first term is from the self energy of the column, and the second is from the 

energy of the mode. The (Rp/ Rw) 2m term is due to the image charges induced by 
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the mode. Taking a time derivative of this equation gives 

dH</> ~ N e2 (-J_ dRp __ l_a dam (l _ (R /R )2m)) 
di L Rp di 2m m dt P w ' (D.8) 

where I have kept only the lowest order terms in am. This equation shows that the 

change in electrostatic energy is caused by the expansion of the plasma column and 

the decrease in the mode amplitude. The rate of change of Rv and am are related 

through the conservation of angular momentum. To lowest order in am, the total 

angular momentum is given by 

(D.9) 

Setting the the time derivative of Equation D.9 to zero gives 

1 dRp 1 dam 
--- - --a --
Rv di - 2 m di . (D.10) 

Inserting this into Equation D.8 and defining the damping rate, /m , by dam/di = 

dH</> 1 2 2 m 
dt = -2,NLe amm - 1 + (Rv/ Rw)2m /m· (D.11) 

The damping rate of the mode can now be obtained by using conservation 

of energy to set the sum of Equations D.6 and D.11 to zero. This gives 

(D.12) 

Note that /m depends only weakly on m through the last term. If Rv/ Rw is small, 

/m is the same as /est from Equation 4.22, except for a numerical constant. That is, 

Equation D.12 predictes that the damping rates of the m 2: 2 diocotron modes due 

to rotational pumping should be nearly identical to the damping rate of the m = 1 

diocotron mode. This has not been tested experimentally, however. 



Appendix E 

Damping of Diocotron Modes by 
Shear Viscosity 

From a fluid perspective, rotational pumping can be thought of as dissipation 

of fluid compressions by a second viscosity. (See Section 4.6.3.) Presumably, the first, 

or shear, viscosity also acts to damp the diocotron modes. In this Appendix, I derive 

an estimate of the damping rates of the linear diocotron modes due to shear viscosity. 

In Section E.1, I derive the damping rate of them 2: 2 modes. I find that the 

damping rate increases with m and in some parameter regimes can be larger than 

the rotational pumping damping rate. In Section E.2, I derive the damping rate of 

the m = 1 mode. Because the shears induced by the m = 1 mode are nonlinear 

in the mode amplitude, the shear viscosity damping rate is small compared to the 

rotational pumping rate. In Section E.3, I show how viscosity, acting on internal 

shears, can move the center of mass of the plasma to damp the m = 1 mode. The 

viscous forces modify the equilibrium plasma shape, which changes the distribution 

of image charges. The perturbed image charge fields cause th~ plasma to E x B drift 

back towards the trap axis. 
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E.1 Damping of m > 2 Modes 

I derive the shear-induced damping rate of the diocotron modes by using 

conservation of energy and angular momentum, much the same way as I derived 

the damping rate of the m ~ 2 modes due to rotational pumping in Appendix D. 

Consider an infinitely long plasma column which has uniform density and tempera­

ture. In the diocotron mode frame, the mode is simply a stationary distortion of the 

plasma cross-section. The radial distance from the axis to the surface of the plasma, 

Rs(B), can be described by Equation D.l. Similarly the angular momentum of the 

column can be described by Equation D.9. 

The electrostatic potential inside the plasma due to a small amplitude dio-

cotron mode of mode number m can be written as 

(E.1) 

where am « 1 is the mode amplitude, Rp is the mean plasma radius, NL = mr R; is 

the number of electrons per unit length in the column, and rp = Rp/ Rw is the scaled 

plasma radius. The :r;m term is due to the image charges induced by the mode. The 

electric fields, and hence the E x B drift velocity of the plasma, can be obtained by 

taking the gradient of the potential. This gives 

v, a; WEii,, ( ~s-l ( 1 - r;m) sin m6, (E.2) 

Vo = a;wEJI,, c:r-l (1- f;m) cos me+ TWR (E.3) 

where WE = 27rnec/ B is the E x B rotation frequency of the plasma in the lab 

frame. For completeness, I have added to vo the rotation velocity of the plasma in 

the diocotron mode frame, rwR, due to the self electric field of the plasma column. 

This uniform rotation does not contribute to the damping of the mode, however. 

The components of the rate of strain tensor, Wjk, can be calculated from the 
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nm ( r) sin me' (E.4) 

-nm(r) sin me, (E.5) 

Om(r) cos me, (E.6) 

where nm(r) = (m- l)amWE(r/ Rpr-2(1- r;m). Using the Wjk, I calculate the rate 

of increase of thermal energy per electron, Hr, due to dissipation of the E x B flow 

by the shear viscosity. The rate of change of Hr in a length L of plasma is given by 

1 dHr 1 [ 2
11: {Rp 77 (m - 1)2 ( )2 

L dt = 2N 17 lo de lo rdr tr WA = 2 nL m w1a~ 1 - r;m ' (E.7) 

where 77 is the coefficient of shear viscosity. Conservation of energy stipulates that the 

increase in thermal energy comes from a decrease in the electrostatic energy, Hq,, due 

to Joule heating as the plasma expands and the mode damps. Using Equation D.11 

to relate dHq,/dt to the damping rate of the mode, /m, and setting d(Hr+Hq,)/dt = 0, 

gives 
w2 µ (m - 1)2 (1 - f 2m) 

'V -4 p p 
1m - 2 R2 1 + -2m ' we P m - rP 

(E.8) 

where Wp is the plasma frequency, We is the cyclotron frequency, andµ is the kinematic 

viscosity, i.e. µ = 77 /nme. Note that if the image charge effects can be neglected, i.e. 

r;m -«: 1, the damping rate is proptional to m - 1. The higher the mode number, 

the larger the shears, and the stronger the viscous dissipation. 

The best developed theory of shear viscosity in pure electron plasmas is by 

O'Neil [45, 46), who postulated that the electrons diffuse mainly through E x B 

drifts. O'Neil's viscosity coefficient can be expressed as 

V7r 2 2 ( /) µ = 6 nb v )..D ln AD re , (E.9) 

where b is the distance of closest approach, v is the thermal velocity, and >-..v is the 

Debye length. Substituting this expression into Equation E.8, it is evident that /m 
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should be largest for a narrow, high density, cold plasma in a weak magnetic field. 

Inserting the plasma parameters from Figure 4.16 and a temperature of 0.003 eV 

into Equation E.8 gives a shear viscosity damping rate of Im = 0.10 sec-1 for the 

m = 2 diocotron mode. This is much larger than the rotational pumping rate of 

0.0016 sec-1 given by Equation D.12, because the shear viscosity is not suppressed 

when r c < b, as is the second viscosity. When r c > b, the rotational pumping rate is 

generally larger for CV plasma parameters. 

E.2 Damping of the m = 1 Mode 

The m = 1 diocotron mode differs from the other diocotron modes in that 

it is a displacement and distortion of the the plasma column rather than a just 

a distortion. Consider an infinitely long plasma column of uniform density and 

temperature which is displaced a distance D from the trap axis. In the frame of 

the diocotron mode, the column is circular to first order in D / Rw, and the mode 

is undamped by shear viscosity. However, the image charges cause straining fields 

to second order in D / Rw, resulting in an elliptical distortion of the plasma column. 

Fine [18] has shown that the equilibrium quadrupole moment, q2 , of this distortion 

is given by 

r; (RDw)2' q2 = 2 (1 - r;)2 (E.10) 

where fp = Rp/ Rw is the scaled plasma radius. 

There are 4 sources of electric fields in the rotating frame of the diocotron 

mode. These are 

1. the self field of the plasma, 

2. the m = 1 image charge fields, 

3. the fields due to the elliptical distortion, and 
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D 

Figure E.1: Plasma centered coordinates for off-axis plasma. The straining field 
from the image charges gives the plasma an elliptical cross-section. 

4. the v x B fields due to the rotating frame. 

To second order in D / Rw, the E x B drift velocities due to all these fields are, in 

plasma centered coordinates, 

q2wERp ~ ( 1 - r;) sin 2¢, 
p 

q2wERp}!_ (1 - r;) cos2¢ + PWR, 
Rp 

(E.11) 

(E.12) 

where WE is the E x B rotation frequency of the plasma around the center of charge 

in the lab frame, and WR is the rotation frequency of the plasma in the diocotron 

mode frame. The coordinates (p, ¢) are measured from the center of charge of the 

plasma, as shown in Figure E. l. These velocities are almost the same as ( Vr, vo) given 
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by Equations E.2 and E.3 for an m = 2 diocotron mode of amplitude a2 = 2q2 • Thus, 

I can immediately write down the rate of change of thermal energy (per electron per 

length L) as 

(E.13) 

The electrostatic energy per electron, to lowest order in D / Rw, is given by 

(E.14) 

and the rate of change of Hr/> is given by 

(E.15) 

Conservation of angular momentum gives 

R dRp = _ 2DdD. 
p dt dt 

(E.16) 

Defining the damping rate of the mode by dD / dt = -11 D then gives 

(E.17) 

Finally, using conservation of energy to set d(Hr + H¢)/dt = 0, inserting the expres­

sion for q2 from Equation E.10 into Equation E.17, and solving for the damping rate 

gives 
2 n2 ( -2 )

3 
WP µ rp 

/1 = 8 2 R2 R2 1 - -2 
we P w rP 

(E.18) 

The damping is nonlinear, i.e. /I depends on D, because the elliptical distortion of 

the plasma is nonlinear in D. This also causes the damping to be extremely weak for 

small D/Rw. Comparing to Equation E.8, the damping rate of them= 1 mode due 

to shear viscosity is a factor of 106 smaller than the m = 2 mode for Rp/ Rw = 0.2 

and D / Rw = 0.1. Similarly, the shear viscosity damping rate is much smaller than 

the rotational pumping rate. Inserting the plasma parameters from Figure 4.16 into 

Equation E.18, along with T = 0.003 eV and D/Rw = 0.1 gives a damping rate of 
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1.8 x 10-10 sec-1 • (Here, as at the end of Section E.2, I have used Equation E.9 for 

µ.) The shear viscosity rate is small compared to the rotational pumping rate for 

them= 1 mode, even when re< b. 

E.3 Dynamics of the Shear Damping of the m = 1 
Diocotron Mode 

The calculation in the previous section does not explain the origin of the 

forces which cause the m = 1 diocotron mode to damp. The mode damps through 

the motion of its center of mass, so these forces must be external to the plasma. 

More precisely, the image charges must provide an electric field in the -0 direction 

which is non-zero when integrated over the plasma. Now, Fine [18] has shown that 

the equilibrium shape of an inviscid plasma in an m = 1 diocotron mode orbit is an 

ellipse with its long axis aligned with direction of motion. The image charge fields 

in the () direction produced by this equilibrium are zero when integrated over the 

plasma. Therefore, the viscous forces must produce a new, quasi-equilibrium in order 

to damp the mode. Specifically, the ellipse is rotated in the in the -'lj; direction, as 

shown in Figure E.2. 

In order to find the rotation angle, a, the electric and viscous forces on the 

plasma must be calculated. The lowest order, nonzero viscous forces are proportional 

to ( D / Rw )2
• The electric fields to this order are [18] 

E,p 

-q2mrep [ (1 - r;f cos2'1j; + (1- r;) cos(2'1j; + 2a)]' 

q2mrep [ ( 1 - r;f sin 21/J + ( 1 - r;) sin(2'1j; + 2a)] . 

(E.19) 

(E.20) 

Here, the first term is from image charges induced by the displacement of the plasma 

from the trap axis; these fields are independent of the rotation angle. The second 

term is from the elliptical distortion of the plasma and the associated image charges. 
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Figure E.2: Shear viscosity rotates the elliptical equilibrium shape in the-¢ direc­
tion. This increases the positive (negative) image chrages in the +y'(-y') direction, 
creating an electric field which acts to damp the mode. 

The E x B drift velocities of order (D / Rw )2 are obtained from the electric 

fields, and the rate of strain tensor from these velocities. The viscous forces act only 

on the surface of the uniform density plasma, i.e. awjk/axk = 0 inside the plasma. 

The force per unit area on the plasma surface, p, is given by 

-17q2WE [ (1- r;) 2 
sin2'1j; + (1 - r;) sin(2'1j; + 2a)], (E.21) 

-17q2wE [ (i - r:;) 2 
cos2¢ + (i - r~) cos(2¢ + 2a)]. (E.22) 

The elliptical equilibrium measured by Fine is that of an elliptical vortex in a "pure 

straining field," as calculated by Sa:ffman [57]. Since the viscous forces do not produce 

a pure straining field, Sa:ffman's equilibrium is not applicable here. Instead I look for 
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the rotation angle at which the forces on the elliptical plasma are symmetric across 

the long axis of the ellipse. That is, the angle at which F · x' = Fp cos 'lj;' - Fp sin 'lj.;' 

is odd in the x' direction and even in the y' direction, where F is the total force 

vector and the primed coordinates refer to the rotated coordinate system shown in 

Figure E.2. Therefore, the equilibrium rotation angle is defined by 

(E.23) 

which gives a rotation angle of 

6µ 
a= R2(1 -2)' 

We P - rp 
(E.24) 

where µ is again the kinematic viscosity. 

The rotation of the elliptical equilibrium perturbs the image charges. The 

rotated equilibrium induces more positive image charges in the +y' direction than 

in the -y' direction, as shown in Figure E.2. The order (D / Rw)3 component of the 

potential of the perturbed image charges is [18] 

(E.25) 

where the superscript indicates that this is only the order (D / Rw )3 component of the 

perturbed image charge potential. This potential gives rise to electric fields which, 

in turn, give rise to E x B drifts. The damping rate of the rn = 1 diocotron mode is 

then given by 

1 dD 1 la27r laRp 
11 - --- = --- d'lj; npdp(vpcos'lj;-v..psin'lj;). 

D dt DNL 0 0 
(E.26) 

It is evident that only terms in v p( v..p) proportional to cos 'lj;( sin 'lj;) will give a nonzero 

contribution to /l · To order ( D / Rw )3 , the only term that satisfies this condition 

comes from the first term in Equation E.25. This gives a damping rate of 

(E.27) 



150 

which is the same, except for a factor of 4/3, as the damping rate in Equation E.18. 

The factor of 4/3 is presumably due to the ad hoc definition of the rotation angle 

given by Equation E.23. A more formal definition should give closer agreement with 

Equation E.18. 



Appendix F 

Rotational Pumping Dynamics 

The heuristic derivation of the rotational pumping transport rates given in 

Section 4.4 does not explain how the confining fields cause the plasma to expand 

and the center of charge to move back to the trap axis. In this Appendix, I calculate 

the forces on the plasma and find that the collisional perturbation to the parallel 

temperature, 1J1, produces forces which are not azimuthally symmetric around the 

plasma axis. I then rederive the radial electron flux and m = 1 diocotron mode 

damping rate given by Equations 4.14 and 4.22 from the drifts arising from these 

forces. 

Consider a plasma with density n(r, B) and length L0 (r, B). If the Debye 

length is very small, i.e. >.n ~ L 0 , then the potential and density along a magnetic 

field line are constant inside the plasma and abruptly decrease at the end. At each 

end of the plasma, the force from the confining fields must balance the tendency of 

the plasma to expand along the field lines. Thus, the z-component of the force from 

the confining fields at one end of the plasma is given by 

(F.l) 

where nz = nLo is the z-integrated density, n1J1 is the thermal pressure, and P<I> is 

the electrostatic "pressure" due to the gradient in the space charge at the end of the 

plasma. Due to the curvature of the equipotentials (shown in Figure 4.1), there is 
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also a radial component to the confining electric fields. The radial component of the 

confining force is, to lowest order in r / Rw, 

(F.2) 

where Equation B.2 has been used to approximate the confining potential, and "'= 
io1 is the 1st zero of the lo Bessel function. 

If the plasma radius were infinitesimally small, Fr would simply cause a 

shift in the m = 1 diocotron mode frequency, as shown by Fine [17]. Combined 

with electron-electron collisions, however, it causes rotational pumping transport in 

a finite radius plasma. To demonstrate this, I use the plasma-centered coordinate 

system shown in Figure E.1. The confining field forces are then given by 

(F.3) 

(F.4) 

Note that I have included the here the force from both ends of the plasma, and 

have assumed that Fo is zero. Using Equation 4.11, the parallel temperature can be 

written, to first order in 8L/ L0 , as 

(F.5) 

where 'i/J = wRt. The first term in this equation, multiplied by p in the expression for 

Fp in Equation F.3, contributes to a shift in the rotation frequency of the plasma. 

Similarly, the electrostatic pressure contributes to this zero order shift in WR· The 

expansion of the plasma, however, is due to F,p. The z-integrated, 'i/J-averaged radial 

electron flux is given by 

(F.6) 

The electrostatic pressure, pq, = pq,(p, cos 'i/J ), makes no contribution to r p because 

variations in the electron density are in phase with the variation in the plasma length. 
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Tl = 2 (oL/Lo) To 

Figure F.1: Forces on the plasma from the confining fields. The parallel temper­
ature oscillates in 'l/J, inducing an azimuthal variation in the force from the ends. 
The arrows show the component of F'lf; which is proportional to 11 J.ll; this component 
causes the plasma to expand. 

Comparing to Equations F .4 and F .5, it is apparent that only the collisional term of 

the thermal pressure makes a non-zero contribution to f p· The collisions induce a 

phase shift between the thermal pressure and the variation in the plasma length. This 

is shown schematically in Figure F.1. A tube of plasma drifting around the plasma 

axis is longest near the wall and shortest near the trap axis. Hence, 111 is hottest near 

the trap axis and coldest near the wall. Collisions attempt to equilibrate T.L and 111, 

lowering 711 if 111 > T.L (or raising 111 if 111 < T.L), creating a temperature gradient 

in they direction. The arrows in Figure F.l show the azimuthal forces arising from 

this gradient; i.e. the components of F'lf; which are proportional to 11 Lii • The drifts 
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caused by these forces result in the expansion of the plasma. Integrating over these 

drifts (Equation F .6) recovers the the expression for r P given in Equation 4.14, if 

Equation B.4 is used for 8L and the substitution WR= -Epc/ pB is made. 

Similarly, the damping rate of the m = 1 diocotron mode can be derived 

from Equations F.3, F.4, and F.5. Defining an (x,y) coordinate system as shown 

in Figure F.l, the x-component of the drifts induced by the confining forces at the 

plasma ends is given by 

Vx = - e~(Fpsin?.jJ + F,pcos?.jJ). (F.7) 

The damping rate can be calculated as 

(F.8) 

where N is the total number of electrons. As in the expression for f p in Equation F .6, 

only the collisional term of the thermal pressure contributes to this integral. If it 

is assumed that the plasma is uniform in density, integrating Equation F .8 recovers 

the expression for /est in Equation 4.22 if Equation B.4 is again used for 8L. 



Appendix G 

Symbols and Notations 

This appendix lists symbols and notations commonly used in this thesis. 

Whenever necessary, definition of a symbol or equation number where it is first 

introduced is given. All equations use the cgs convention. 

-e 

me 
c 
k 
B 

<P 
E 
T 
n 

(r,O,z) 

(p, 1/;, z) 

t 

********** 

Bz 

-\l<P 

Fundamental Quantities 

Electron charge 
Electron mass 

********** 

Speed of light in vacuum 
Boltzmann's constant 
Axial magnetic field 
Electrostatic potential 
Electric field 
Plasma temperature 
Plasma density 
Cylindrical coordinate system centered on the 
trap axis. 
Cylindrical coordinate system centered on the 
plasma axis. 
Evolution time 
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E11 
El. 

111 
Tl. 

Tw 

v11 

v 

D 

Le 
L(x,y) 

Lo(p) 

8L(p) 

Lp 

Rp 

********** Energies and Velocities ********** 
Electron energy parallel to magnetic field 

Electron energy perpendicular to magnetic field 

Plasma temperature parallel to magnetic field 

Plasma temperature perpendicular to magnetic 
field 

Temperature of trap wall 

J2E11/me Electron velocity parallel to magnetic field 

JkT/me Thermal electron velocity 

********** Lengths ********** 

Eq.4.16 

Eq.4.18 

Eq.4.17 

Eq.2.12 

v/wc 
e2 /kT 

J kT / 47rne2 

1.27 cm 

Fig.2.2 

Displacement of plasma from the trap axis 

Length of grounded confinement region 

Plasma length profile 

Azimuthally averaged plasma length profile 

Amplitude of variation of plasma length in 'ljJ 

Mean plasma length 

Plasma column radius 

Thermal electron gyroradius 

Distance of closest approach 

Debye length 

Wall radius of trap 

Radius of ith Pl-P5 collector plate 



We 

Wp 

f B 

f E 

fd 

WR 

fmod 

l/ Lil 

llee 

l/3 

Tm 

Trad 

I 

/est 

/rp 

/sq 

/ns 

/m 

********** 

eB/mec 

J47rne2/me 
v/2Lp 

-Erc/27rrB 

~ (Rp/ Rw)2 fE 

27r(JE - fd) 

Eq.2.15 

Eq.2.18 

Eq.4.27 

-(dD/dt)/D 

Eq.4.22 

Eq.4.21 
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Times and Frequencies ********** 

Electron gyrofrequency 

Electron plasma frequency 

Thermal electron axial bounce frequency 

E x B rotation frequency 

m = 1 diocotron mode frequency 

E x B rotation frequency in the diocotron mode 
frame 

Applied voltage modulation frequency 

T11-T .L collisional equilibration rate 

Electron-electron collision rate 

3 body collision rate 

Plasma column lifetime 

Plasma cooling time due to cyclotron radiation 
h -1 

W en l/Lll ~Trad 

m = 1 diocotron mode damping rate 

Estimate of m = 1 diocotron mode damping rate 
from rotational pumping theory 

Exact m = 1 diocotron mode damping rate from 
rotational pumping theory 

m = 1 diocotron mode squeeze damping rate 

m = 1 damping rate with no squeeze 

Damping rate of m 2: 2 diocotron modes 

Note that w = 27r f for all frequencies. 
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nz 

N 

NL 

Po 
(r2) 
(p2) 

Hq, 

Hr 

Hr ad 

Wps 

</>p 

Pl-P5 

Ll-L6 

m 

Vc 
Ysq 

Vmod 

rexp 
p 

rth 
p 

1] 

µ 

( 

Cs 

f dzn 

f d3rn 

N/Lp 

Eq.3.1 

f d3r nr2 /N 
(r2) - n2 

Eq.4.3 

Eq.4.4 

Eq.4.5 

Eq.4.6 

********** Integrals ********** 

z-integrated plasma density 

Total number of electrons 

Number of electrons per unit length 

Angular momentum 

Mean square radius of plasma about trap axis 

Mean square radius of plasma about plasma axis 

Electrostatic energy per electron 

Thermal energy per electron 

Energy loss due to cyclotron radiation per electron 

Work done by plasma on power supplies per 
electron 

Electrostatic potential at plasma center 

********** Miscellaneous ********** 

Eq.4.20 

Eq.4.14 

Eq.E.7 

17/nme 

Eq.4.29 

Eq.B.17 

Collector plates 

Trap cylinders 

Azimuthal mode number 

Confinement voltage 

Squeeze voltage 

Applied modulated voltage 

Experimental z-integrated, ~-averaged radial 
electron flux 

Theoretical rotational pumping flux 

First, or shear, viscosity coefficient 

Kinematic viscosity coefficient 

Second, or bulk, viscosity coefficient 

End slant coefficient 
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