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The collisional relaxation of a strongly magnetized pure ion plasma that is composed of two

species with slightly different masses is discussed. We have in mind two isotopes of the same

singly ionized atom. Parameters are assumed to be ordered as X1;X2 � jX1 � X2j � �vij=�b and

�v?j=Xj � �b, where X1 and X2 are two cyclotron frequencies, �vij ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Tk=lij

q
is the relative parallel

thermal velocity characterizing collisions between particles of species i and j, and �b ¼ 2e2=Tk is

the classical distance of closest approach for such collisions, and �v?j=Xj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T?j=mj

p
=Xj is the

characteristic cyclotron radius for particles of species j. Here, lij is the reduced mass for the two

particles, and Tk and T?j are temperatures that characterize velocity components parallel and

perpendicular to the magnetic field. For this ordering, the total cyclotron action for the two species,

I 1 ¼
P

i21m1v2
?i=ð2X1Þ and I 2 ¼

P
i22m2v2

?i=ð2X2Þ are adiabatic invariants that constrain the

collisional dynamics. On the timescale of a few collisions, entropy is maximized subject to the

constancy of the total Hamiltonian H and the two actions I 1 and I 2, yielding a modified Gibbs

distribution of the form exp½�H=Tk � a1I 1 � a2I 2�. Here, the aj’s are related to Tk and T?j

through T?j ¼ ð1=Tk þ aj=XjÞ�1
. Collisional relaxation to the usual Gibbs distribution,

exp½�H=Tk�, takes place on two timescales. On a timescale longer than the collisional timescale by

a factor of ð�b2
X2

1=�v
2
11Þexpf5½3pð�bjX1 � X2j=�v12Þ�2=5=6g, the two species share action so that a1

and a2 relax to a common value a. On an even longer timescale, longer than the collisional

timescale by a factor of the order expf5½3pð�bX1=�v11Þ�2=5=6g, the total action ceases to be a

good constant of the motion and a relaxes to zero. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4871490]

I. INTRODUCTION

There is good agreement between theory and experiment

for the collisional relaxation of strongly magnetized single

species plasmas.1–5 The relaxation is novel because the colli-

sional dynamics is constrained by adiabatic invariants asso-

ciated with the cyclotron motion. Here, we extend the theory

to the case of a two-species plasma, where the charges of the

two species are the same (e1 ¼ e2) and the masses differ only

slightly (i.e., jm1 � m2j � m1;m2). We have in mind a pure

ion plasma that is composed of two isotopes. Such isotopi-

cally impure ion plasmas are often used in experiments.6,7

In Sec. II, we begin with an analysis of a collision

between two isotopically different ions that move in the uni-

form magnetic field B ¼ Bẑ. For sufficiently strong magnetic

field, the collision looks very different from Rutherford scat-

tering; the two ions approach and move away from one

another in tight helical orbits that follow magnetic field

lines.

We will find that the sum of the cyclotron actions for the

two ions, I1 þ I2 ¼ m1v2
?1=ð2X1Þ þ m2v2

?2=ð2X2Þ, is an adia-

batic invariant that is nearly conserved in the collision. Here,

mjv2
?j=2 and Xj ¼ eB=ðmjcÞ are the cyclotron kinetic energy

and cyclotron frequency for the two ions (j ¼ 1,2). More spe-

cifically, the change in the total action is of order

DðI1 þ I2Þ � exp½�Xcs�, where X1 ’ X2 � Xc and s is a

time that characterizes the duration of the collision. The time

is shortest, and the change DðI1 þ I2Þ largest, for nearly

head-on collisions, where s ’ ðp=2Þðb=vkÞ. Here, vk is the

initial relative velocity of the ions parallel to the magnetic

field, b ¼ 2e2=ðlv2
kÞ is the minimum separation between the

ions allowed on energetic grounds, and l � m1m2=ðm1 þ
m2Þ is the reduced mass. This estimate of s uses guiding cen-

ter drift dynamics as a zeroth order approximation to the

orbits and so assumes that the cyclotron radii for the two

ions are small compared to the ion separation [i.e.,

v?j=Xj � b]. For sufficiently large B, the product Xcs ¼
ðp=2ÞðXcb=vkÞ is large compared to unity and the change

DðI1 þ I2Þ � exp½�ðp=2ÞðXcb=vkÞ� is exponentially small.

The same analysis shows that the change in the individ-

ual actions is of order DI1 ’ �DI2 � exp½�jX1 � X2js�,
which also is exponentially small if jX1 � X2j½pb=ð2vkÞ� is

large. By assumption, the ion masses, and therefore the ion

cyclotron frequencies, differ only slightly, so we have the

ordering X1;X2 � jX1 � X2j � vk=b, which implies the

conclusion

I1; I2 � jDI1j ’ jDI2j � jDðI1 þ I2Þj: (1)

The individual actions are well conserved, and the sum of

the two actions is conserved even better.

In Sec. III, we determine how these adiabatic invariants

constrain the collisional relaxation of a strongly magnetized

plasma composed of such ions. We say that the plasma is

strongly magnetized when
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�b � �v?;jk
Xj

and jX1 � X2j �
�vjk

�b
; (2)

where �vij ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Tk=lij

q
is the relative parallel thermal velocity,

�b ¼ 2e2=ðljk�v
2
jkÞ ¼ 2e2=Tk is the distance of closest approach,

�v?j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T?j=mj

p
is the perpendicular thermal velocity for

species j, and ljk is the reduced mass of two interacting par-

ticles from species j and k. As we will see, the temperatures

Tk; T?1, and T?2 need not be equal during the evolution to

thermal equilibrium. The condition X1;X2 � jX1 � X2j plus

inequalities (2) imply that all collisions between unlike ions

are in the strongly magnetized parameter regime.

Note that this definition of strong magnetization is more

restrictive than that used previously for the case of single-

species plasmas.3,4 The requirement jX1 � X2j � �vjk=�b has

replaced the less restrictive requirement X1;X2 � �vjk=�b.

As a first step in determining the influence of the adia-

batic invariants on the evolution, we note that the difference

between the cyclotron frequencies of like ions is zero, so the

change in the individual actions is not exponentially small.

Of course, the change in the sum of the two actions for the

like ions is exponentially small.

Thus, on the timescale of a few collisions, one expects

that like ions will interchange cyclotron action with each

other, but not with unlike ions. On this timescale, the total

cyclotron action of species 1 (i.e., I1 ¼
PN1

j¼1 I1j) and the

total cyclotron action of species 2 (i.e., I 2 ¼
PN2

j¼1 I2j) along

with the total Hamiltonian H are constants of the motion,

and a modified Gibbs distribution, exp½�H=Tk � a1I1

�a2I 2� is established.8 Here Tk; a1 and a2 are thermody-

namic variables. From the velocity dependence in H; I1 and

I 2, one can see that Tk is the temperature that characterizes

velocity components parallel to the magnetic field and that

T?1 ¼ ½1=Tk þ a1=X1��1
and T?2 ¼ ½1=Tk þ a2=X2��1

are

the temperatures that characterize the perpendicular velocity

components for species 1 and 2.

Inequalities (2) imply that on a longer timescale particles of

the two species interchange action with each other conserving

the sum I 1 þ I 2. On this timescale, the variables a1 and a2

evolve to a common value, yielding the distribution

exp½�H=Tk � aðI 1 þ I 2Þ�, where a is that common value. On

a still longer timescale, I1 þ I 2 is not conserved, and a evolves

to zero, yielding the usual Gibbs distribution exp½�H=Tk�.
The purpose of this paper is to calculate the rate at

which a1 and a2 evolve to the common value a and the much

slower rate at which a evolves to zero. We will find that a1

– a2 satisfies the equation,

d

dt
ða1 � a2Þ ¼ ��aða1 � a2Þ (3)

and that a satisfies the equation

d

dt
a ¼ ��ba; (4)

where �a is of the order O½n�b
2

0�v11;0K2ð�bjX1 � X2j=�v12Þ
ð�v11=ð�bX1ÞÞ2� and �b is of the order O½n�b

2

0�v11;0K1ð�bX1=�v11Þ�,
and subscript 0 refers to initial values before equilibration.

K1ð�jÞ and K2ð�jÞ decrease exponentially with increasing �j.

In the limit of �j � 1; K1ð�jÞ and K2ð�jÞ are approximated by

the asymptotic expressions,

K1ð�jÞ ’ 3:10�j�7=15e�5ð3p�jÞ2=5=6; (5)

K2ð�jÞ ’ 3:87�j13=15e�5ð3p�jÞ2=5=6: (6)

In K1ð�jÞ; �j is the magnetization �jij ¼ �bXi=�vij, whereas in

K2ð�jÞ; �j is the magnetization difference j�j12 � �j21j, when

K1 and K2 are used to describe the equipartition rates.

II. TWO-PARTICLE COLLISION

In this section, we consider the isolated collision of two

ions that have equal charges ðe1 ¼ e2 � eÞ, slightly different

masses ðjm1 � m2j � m1;m2Þ, and move in the uniform

magnetic field B ¼ Bẑ. The Hamiltonian for the two interact-

ing charges can be written as

H ¼
X2

k¼1

�
p2

zk

2mk
þ p2

xk

2mk
þ ðpyk � eBx=cÞ2

2mk

�

þ e2

½ðx1 � x2Þ2 þ ðy1 � y2Þ2 þ ðz1 � z2Þ2�1=2
; (7)

where we have used the vector potential A ¼ Bxŷ, and the

quantities (xk,pxk), (yk,pyk), (zk,pzk) are canonically conjugate

coordinates and momenta.9

We assume that the magnetic field strength and initial

velocities satisfy the conditions for strong magnetization as

defined in Sec. I (i.e., v?j=Xj � b and jX1 � X2j � vk=b). In

this limit, the following transformation10 is useful:

Yk ¼ yk �
c

eB
pxk; (8)

Xk ¼
c

eB
pyk; (9)

wk ¼ �tan�1 yk � Yk

xk � Xk

� �
; (10)

Ik ¼
p2

xk þ ðpyk � eBxk=cÞ2

2mkXk
: (11)

One can check that (zk,pzk), ðYk;PYk
� eB

c XkÞ and ðwk; IkÞ sat-

isfy the usual Poisson brackets required of canonically con-

jugate coordinates and momenta, i.e., fqi; pjg ¼ dij. Here

(Xk,Y k) are the coordinates of the guiding center for the k-th

particle, and ðwk; IkÞ are the gyro-angle and cyclotron action

for the k-th particle. In terms of these new canonical varia-

bles, the Hamiltonian takes the form

H ¼
X2

k¼1

p2
zk

2mk
þ XkIk

� �
þ e2

jr1 � r2j
; (12)

where

jr1 � r2j2 ¼ ðz1 � z2Þ2 þ ðX1 þ q1 cos w1 � X2 � q2 cos w2Þ
2

þðY1 � q1 sin w1 � Y2 þ q2 sin w2Þ
2: (13)
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Here, qk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ik=ðmkXkÞ

p
is the cyclotron radius of the k-th

particle.

Since jr1 � r2j is periodic in w1 and w2, the Hamiltonian

can be written in the form

H ¼
X2

k¼1

p2
zk

2mk
þ XkIk

� �
þ
X
l;�

gl�e
iðlw1þ�w2Þ; (14)

where gl� ¼ gl�ðI1; I2; z1 � z2;X1 � X2; Y1 � Y2Þ, and l and

� run over all integer values from �1 to þ1.

We will find it instructive to calculate the change over

the course of the collision in the sum and difference of the

cyclotron actions, DðI1 þ I2Þ and DðI1 � I2Þ. Hamilton’s

equations yield the time derivatives

d

dt
ðI1 þ I2Þ ¼ �

@

@w1

þ @

@w2

� �
H

¼ �
X
l�

iðlþ �Þgl�e
iðlw1þ�w2Þ (15)

and

d

dt
ðI1 � I2Þ ¼ �

@

@w1

� @

@w2

� �
H

¼ �
X
l�

iðl� �Þgl�e
iðlw1þ�w2Þ: (16)

For strong magnetization, one expects guiding center

drift theory to provide a good zeroth order approximation to

the particle orbits. Moreover, the guiding center variables

are slowly varying in time compared to the rapidly varying

gyro-angles w1 and w2. In this approximation, the arguments

of gl� ¼ gl�ðI1; I2; z1 � z2;X1 � X2; Y1 � Y2Þ are slowly

varying and the exponentials eiðlw1þ�w2Þ are rapidly oscillat-

ing, and the time integral of such a product phase mixes to a

small value. We will find that the value is exponentially

small in the ratio of the rapid to the slow timescales.

At this point, we can anticipate the main result of the

calculation. The smallest frequency for the exponentials is

jX1 � X2j, corresponding to the choice l ¼ �� ¼ 61. Since

the coefficient for this term vanishes identically in Eq. (15)

but not in Eq. (16), the change jDðI1 þ I2Þj is much smaller

than the change jDðI1 � I2Þj. Equivalently, one may say that

the total action is conserved to much better accuracy than ei-

ther of the two actions independently, i.e., jDðI1 þ I2Þj
� jDI1j; jDI2j.

The guiding center Hamiltonian11,12 is obtained simply

by setting q1 ¼ q2 ¼ 0 in Eq. (13), yielding

HGC ¼
X2

k¼1

p2
zk

2mk
þ XkIk

� �

þ e2

½ðz1 � z2Þ2 þ ðX1 � X2Þ2 þ ðY1 � Y2Þ2�1=2
; (17)

where PYk
¼ c

eB Xk. Making the canonical transformation to

center-of-mass and relative coordinates,

z ¼ z1 � z2; (18)

Z ¼ m1z1 þ m2z2

m1 þ m2

; (19)

pz ¼
m2pz1 � m1pz2

m1 þ m2

; (20)

PZ ¼ pz1 þ pz2 (21)

yields the Hamiltonian

HGC ¼
P2

Z

2M
þ p2

z

2l
þ I1X1 þ I2X2

þ e2

½ðz1 � z2Þ2 þ ðX1 � X2Þ2 þ ðY1 � Y2Þ2�1=2
; (22)

where M ¼ m1 þ m2 and l¼m1m2/(m1 þ m2).

Thus, with guiding center dynamics, the quantities HGC,

PZ, I1, I2, and ðX1 � X2Þ2 þ ðY1 � Y2Þ2 � jDR?j2 are con-

stants of the motion, and the relative coordinate z(t) is gov-

erned by the equation

l _z2ðtÞ
2
þ e2

ðjDR?j2 þ z2ðtÞÞ1=2
¼

lv2
k

2
; (23)

where vk � _zðt ¼ �1Þ is the initial relative velocity.

From this equation, one sees that the minimum allowed

separation between the guiding centers is given by b

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDR?j2 þ z2jmin

q
¼ 2e2=ðlv2

kÞ. We choose t ¼ 0 so that

z2ðtÞ is an even function of t. For the case where jDR?j < b,

there is no reflection and we choose z(0) ¼ 0, and for the

case where jDR?j > b, we choose t ¼ 0 to be at the point of

reflection, that is, z2ð0Þ ¼ b2 � ðDR2
?Þ.

In the guiding center drift approximation, the most rap-

idly varying variable in the argument of gl�ðI1; I2; z1

�z2;X1 � X2; Y1 � Y2Þ is the relative coordinate z(t) ¼ z1(t)
– z2(t), and the timescale associated with this variation is of

order b=vk or larger. By comparison, the timescale for the os-

cillatory variation of the exponential expðilw1 þ i�w2Þ is

jlX1 þ �X2j�1 < jX1 � X2j�1
. Thus, the strong magnetiza-

tion ordering vk=b� jX1 � X2j � X1;X2 is simply a state-

ment of the needed separation of timescales.

We Taylor expand gl� in powers of qk=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDR?j2 þ z2

q
� qk=b� 1. As one would expect, each term in the expan-

sion of gl� is of order ðq=bÞjljþj�j, and for simplicity we

retain only the lowest order term. An equivalent way to do

so is to expand H in powers of qk and collect terms of the

right Fourier dependence expðilw1 þ i�w2Þ, so as to obtain

the Taylor-approximated gl� . Expressions of gl� that are

used in the calculation are the following:

g10 ¼ �
eiðX1tþ/1Þ

2

e2v?1=X1

jDR?j2 þ z2
¼ g	�1;0; (24)

g01 ¼
eiðX2tþ/2Þ

2

e2v?2=X2

jDR?j2 þ z2
¼ g	0;�1; (25)
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g1;�1 ¼ �
eiðX1�X2Þtþið/1�/2Þ

2

e2

ðjDRj2 þ z2Þ3=2


 1� 3jDR?j2

2ðjDR?j2 þ z2Þ

 !
v?1v?2

X1X2

¼ g	�1;1; (26)

where v?k ¼ qkXk is the cyclotron velocity, /k ¼ wkðt ¼ 0Þ
is the gyroangle at t ¼ 0, and as mentioned earlier we choose

t ¼ 0 so that z2(t) is an even function of time. Also we note

that jg10j and jg01j are of the order qk / X�1
k / B�1, but

jg1;�1j is of the order q2
k / X�2

k / B�2.

Since the time integrals
Ð1
�1 dtgl� expðilw1 þ i�w2Þ

turn out to be exponentially small in the ratio of the slow to

rapid timescales, we need only to retain the lowest frequency

terms in the sum over l and �. Specifically, we retain the

terms with frequencies jX1 � X2j; X1, and X2, using Eqs.

(24)–(26) to obtain the results

DðI1 � I2Þ ¼ �
ð1
�1

e2 v?2

X2

sin /2

jDR?j
ðjDR?j2 þ z2Þ3=2

cosðX2tÞdt�
ð1
�1

e2 v?1

X1

sin/1

jDR?j
ðjDR?j2 þ z2Þ3=2

cosðX1tÞdt

þ
ð1
�1

e2v?1v?2

ðjDR?j2 þ z2Þ3=2

2

X1X2

cos½ðX1 � X2Þt�sinð/1 � /2Þ
�

1� 3jDR?j2

2ðjDR?j2 þ z2Þ

�
dt; (27)

and

DðI1 þ I2Þ ¼
ð1
�1

e2 v?2

X2

sin/2

jDR?j
ðjDR?j2 þ z2Þ3=2

cosðX2tÞdt�
ð1
�1

e2 v?1

X1

sin/1

jDR?j
ðjDR?j2 þ z2Þ3=2

cosðX1tÞdt: (28)

The integrals carrying cosðXitÞ are proportional to

f1ðji; gÞ ¼
ð1
�1

dncosðjinÞ
ðg2 þ f2ðnÞÞ3=2

; (29)

while the integral carrying cos½ðX1 � X2Þt� is proportional to

f2ðj1� j2;gÞ ¼
ð1
�1

dncos½ðj1� j2Þn�
ðg2þ f2ðnÞÞ3=2

�
1� 3g2

2½g2þ f2ðnÞ�

�
;

(30)

where n ¼ vkt=b; ji ¼ bXi=vk; g ¼ jDR?j=b and f ¼ z=b. In

terms of these variables, differential equation (23) takes the form

df
dn

� �2

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ f2ðnÞ

q ¼ 1; (31)

where f2ð0Þ ¼ maxð0; 1� g2Þ. In Sec. III, we will need the

results

DðI1 þ I2Þ ¼ �
e2

bX1

v?1

vk
sin/1

� �
gf1ðj1; gÞ

þ e2

bX2

v?2

vk
sin/2

� �
gf1ðj2; gÞ; (32)

DI1 ¼ �
e2

bX1

v?1

vk
sin/1

� �
gf1ðj1; gÞ

þ e2

bX1X2

v?1v?2

vkb
f2ðj1 � j2; gÞsinð/1 � /2Þ; (33)

DI2 ¼
e2

bX2

v?2

vk
sin/2

� �
gf1ðj2; gÞ

þ e2

bX1X2

v?1v?2

vkb
f2ðj1 � j2; gÞsinð/2 � /1Þ: (34)

In the regime of strong magnetization (i.e.,

1� jj1 � j2j � j1; j2), the integrals f1 and f2 are exponen-

tially small, since the integrands are the product of a rapidly

oscillating cosine and a slowly varying function. The rapid

oscillation makes a direct evaluation of such integrals

difficult.

In Appendix, we analytically continue the integrals into

the complex n-plane, making the exponentially small value

of the integrals manifest in the integrands themselves. This

facilitates numerical evaluation of the integrals and yields

the asymptotic forms

f1ðjj; gÞ ¼ h1ðjj; gÞexp½�gðgÞjj�; (35)

f2ðjj1 � j2j; gÞ ¼ h2ðjj1 � j2j; gÞexp½�gðgÞjj1 � j2j�;
(36)

where

gðgÞ ¼
ðg

1

x3=2dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1Þðg2 � x2Þ

p
�����

����� (37)

is shown in Fig. 1. From the numerical evaluations, one can

see that the quantities hjðj; gÞ are neither exponentially small

nor large. Also for g¼ 0, one can show that

hjðj; 0Þ ¼ h2ðj; 0Þ ’ 8pj=9. In Sec. III, we will need the as-

ymptotic forms only for small g. Fig. 2 shows a comparison

of the numerical solution for f1ðj; 0Þ ¼ f2ðj; 0Þ � f ðjÞ (solid

curve) with the asymptotic solution (dashed curve).

As expected, the asymptotic forms are exponentially

small in the ratio of the slow to fast timescales. For example,

for f1 the fast timescale is sf ¼ X�1
j and the slow timescale is

ss ’ ðp=2Þðb=vkÞ for g ¼ jR?j=b < 1 and ss ’ jR?j=vk for

g > 1. Note from Fig. 1 that gð0Þ ¼ p=2 and that gðgÞ � g
for g� 1. For f2, the only difference is that the fast time-

scale is jX1 � X2j�1
.
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For strong magnetization (i.e., 1� jj1 � j2j � j1; j2),

the asymptotic forms verify the expected ordering for the

changes in the actions (i.e., jDðI1 þ I2Þj � jDI1j; jDI2j � 1).

As a check on the accuracy of Eqs. (32)–(34), we com-

pare the predictions for DðI1 � I2Þ and DðI1 þ I2Þ with

results obtained by direction numerical integrations of

the equations of motion for some sample collisions. For

these comparisons, we choose m2¼m1þ 0.1m1 and v?1

¼ v?2 ¼ 0:01vk. The two particles are initially separated by

the distance d ¼ 100b and given the intial relative velocity

vz ¼ vk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDRj2 þ d2

qr
. The collision ends when the

particles are again separated in the z-direction by the dis-

tance d. The motion is followed with a sixth-order

Runge-Kutta algorithm,13 using a timestep that is sufficiently

small for the error in the total energy to be small compared

to the change DðE?1 þ E?2Þ. The phase angles /j are varied

to obtain the peak-to-peak variation in DðI1 � I2Þ and

DðI1 þ I2Þ. The solid curves in Figs. 3 and 4 are the predic-

tions of Eqs. (32)–(34), with numerical evaluation of

integrals (29) and (30), for the scaled changes DðI1 � I2Þ=
ðm1v2

?1=X1Þ and DðI1 þ I2Þ=ðm1v2
?1=X1Þ, respectively. The

points result from integrating the particle equations of

motion. For the collisions in these figures, g is near zero, and

j2 is varied over a range of values. Of course, j1 ¼ 1:1j2

and jj2 � j1j ¼ 0:1j2. In Fig. 5, j1 is fixed at the value

21.0, and g is varied. We can see from the figures that our

theory matches with the simulation results as long as mag-

netization is strong, i.e. j1 � 1. Particularly from Fig. 4, it is

evident that the theory breaks down when j1 goes lower than

around 2.

III. COLLISIONAL EVOLUTION OF A PLASMA

This section discusses the collisional evolution of a two

species, strongly magnetized, pure ion plasma. Species 1

consists of N1 singly ionized atoms of mass m1 and species 2

of N2 singly ionized atoms of mass m2, where

jm1 � m2j � m1;m2. For simplicity, the plasma is assumed

to be uniform and immersed in a continuous neutralizing

background charge. A laboratory realization of such a

plasma is a thermal equilibrium, pure ion plasma that is con-

fined in a Malmberg-Penning trap. Plasma rotation in the

uniform axial magnetic field of the trap is equivalent to neu-

tralization by a continuous background charge.

The plasma is assumed to be in the weakly correlated

parameter regime, e2n1=3=Tk � 1, where n is the den-

sity.14,15 The inequality can be written as �b � n�1=3, so

close collisions, which are primarily responsible for changes

in the cyclotron actions, are well separated binary interac-

tions of the kind considered in Sec. II. Furthermore, the

plasma is assumed to satisfy the strong magnetization order-

ing in Eq. (2), so all collisions between unlike ions are of the

kind considered in Sec. II.

To understand the final assumption, first recall from

Eqs. (32)–(34) of the Sec. II that the change in actions during

a collision depends sinusoidally on the initial gyroangles

FIG. 1. Graph of gðgÞ.

FIG. 2. Values of f ðjÞ. Solid line: numerical integration of f ðjÞ. Dashed

line: asymptotic expression for large j.

FIG. 3. Change in cyclotron action difference vs jj1 � j2j ¼ j1=11. Here

v?1 ¼ v?2 ¼ 0:5vk and m2 ¼ 1.1m1.

FIG. 4. Change in cyclotron action sum vs magnetization j1. Dots: simula-

tion results. Line: values using numerical integration of f1ðj1; g ¼ 0Þ.
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/kj ¼ /kjðt ¼ 0Þ. The time between close collisions is much

larger than a cyclotron period, so we assume that the par-

ticles enter each collision with random gyroangles.

Thus, the N-particle dynamics consists of many statisti-

cally independent, binary interactions of the kind considered

in Sec. II. In this section, we simply establish a statistical

framework to understand the cumulative effect of these colli-

sions. The derivation follows an approach similar to the

Green-Kubo relations.16

For a collision between unlike particles, we found in Sec. II

that the changes in the individual actions are exponentially

small, jDI1j ’ jDI2j � Oðexp½�pjj1 � j2j=2�Þ, and that the

change in the sum of the actions is even smaller

jDðI1 þ I2Þj � Oðexp½�pj=2�Þ. However, for a collision

between like particles, the change in the individual actions is not

exponentially small since X1 ¼ X2 and exp½�p=2jj1 � j2j�
¼ 1. Of course, the change in the sum of the actions is exponen-

tially small since j ¼ j1 ’ j2 � 1.

Thus, on the timescale of a few collisions, one expects

the like particles to interchange action with each other nearly

preserving the sums I 1 ¼
PN1

j¼1 Iðj1Þ and I2 ¼
PN2

j¼2 Iðj2Þ,
where I(jk) is the action of the j-th particle of species k (k
¼ 1,2). Maximizing entropy subject to the constancy of the

total Hamiltonian H and the total actions I 1 and I 2 yields a

modified Gibbs distribution of the form8

D0 ¼
1

Z
exp �H

Tk
� a1I1 � a2I 2

� �
; (38)

where Z and the thermodynamic variables Tk; a1 and a2 are

determined by the normalization 1 ¼
Ð

dCD0ðCÞ and the ex-

pectation values

hI ki ¼
ð

dCD0ðCÞI k ¼
Nk

ak þ Xk=Tk
; (39)

hHi ¼
ð

dCD0ðCÞH

¼ ðN1 þ N2ÞTk þ hI 1iX1 þ hI 2iX2 þ Ucorr: (40)

Here, dC is a volume element in the N-particle phase space

(N ¼ N1 þ N2). The first three terms in the expression for

hHi are kinetic energy terms, whose form can be understood

from the velocity dependence inH [i.e.,
PN1

j¼1 m1ðv2
kj þ v2

?jÞ=
2þ

PN2

j¼1 m2ðv2
kj þ v2

?jÞ=2] and in I k [i.e.,
PNk

j¼1 mkv2
?j=

ð2XkÞ]. The last term, Ucorr, is the correlation energy due to

the interaction potentials in H. For a weakly correlated and

neutralized plasma, this latter term is small compared to the

kinetic energy terms,14 so we drop this term and use

hHi ’
ðN1 þ N2ÞTk

2
þ hI1iX1 þ hI 2iX2: (41)

Because the I k’s are not exact constants of the motion,

the Liouville distribution, D, is not given exactly by D0. We

set D ¼ D0 þ D1, where D1 is a small correction due to the

time variation of the I k. Also, the thermodynamic variables,

Tk; a1 and a2 vary slowly in time, and the purpose of this

section is to determine that variation.

To that end, we must evaluate the rates of change

dhI ki
dt
¼
ð

dC
@D

@t
I k ¼

ð
dCD I k;Hf g; (42)

dhHi
dt
¼
ð

dC
@D

@t
H ¼

ð
dCD H;Hf g ¼ 0; (43)

where {,} is the Poisson bracket, and use has been made of

the Liouville equation, 0 ¼ dD
dt ¼ @D

@t þ D;Hf g, and of inte-

gration by parts.

There is a subtle point in the evaluation of the Right

Hand Side of Eq. (42). If one were to approximate D by D0,

the resulting integral would be zero

ð
dCD0 I k;Hf g ¼

ð
dC
XNk

j¼1

�Tk
@D0

@wkj

 !
¼ 0; (44)

where wkj is the gyroangle conjugate to Ikj and use has

been made of the facts that the only dependence on wkj is

in H and that dependence is periodic. The non-zero contri-

bution to the Right Hand Side of Eq. (42) comes exclu-

sively from D1, and to know D1 one must solve the

Liouville equation.

We suppose that at some time t� s, the correction D1 is

zero and let D1 develop through the collisional dynamics.

From the Liouville equation, dD/dt ¼ 0, one finds that

Dðt;CÞ ¼ D0½t� s;C0ðC;�sÞ� where the phase point C0

¼ C0ðC; t0 � tÞ evolves to the phase point C as the time

evolves from t0 to t. In evaluating D0½t� s;C0�, we use

HðC0Þ ¼ HðCÞ and I kðC0Þ ¼ I kðCÞ � dI k, where

dI k ¼
ðt

t�s
dt0fI k;HgjC0ðC;t0�tÞ: (45)

By hypothesis, I k changes through a sequence of close

collisions entered with randomly phased initial gyroangles.

Thus, one can think of I kðtÞ as a stochastic variable that suf-

fers a sequence of many small and random changes. The cor-

relation time for _I kðtÞ is about the duration of a close

collision, and the change in I kðtÞ during that time is small.

FIG. 5. Change in cyclotron action difference vs rescaled transverse separa-

tion g, for j1 ¼ 21 and jj1 � j2j ¼ 1:9. Dots: simulation results. Line: val-

ues using exact numerical integration of f2ðjj1 � j2j; gÞ.
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We choose the time interval s to be longer than the correla-

tion time but still small enough that dI k is a small change.

Taylor expanding D0½t� s;C0� with respect to the dI k’s

yields the distribution,

Dðt;CÞ ’ D0ðt� s;CÞ

þ
X2

h¼1

ahD0ðt� s;CÞ
ðt

t�s
dt0fIh;HgjC0ðC;t0�tÞ:

(46)

When this distribution is substituted into integrand (42), the

first term integrates to zero according to Eq. (44). Since the

thermodynamic variables change only by a small amount

during the time s, D0ðt� s;CÞ may be approximated by

D0ðt;CÞ in the second term yielding the result

dhI ki
dt
¼
X2

h¼1

ah

ðt

t�s
dt0
ð

dCD0ðt;CÞ I k;Hf gjC I h;Hf gjC0ðC;t0�tÞ:

(47)

The Poisson brackets in Eq. (47) are non-zero only in

regions of C-space corresponding to close, well-separated,

binary collisions. In those regions, the Poisson brackets

depend primarily on the coordinates and velocities of the

two colliding particles. Thus, the coordinates of all the other

particles may be integrated out, reducing Eq. (47) to the

form

dhI ki
dt
¼ ak

NkðNk � 1Þ
2

ðt

t�s
dt0
ð

dcFð1k; 2kÞ Ið1kÞ þ Ið2kÞ;Hð1k; 2kÞ
� 	

jc � Ið1kÞ þ Ið2kÞ;Hð1k; 2kÞ
� 	

jc0¼c0ðc;t0�tÞ

þakNkNk0

ðt

t�s
dt0
ð

dcFð1k; 1k0 ÞfIð1kÞ;Hð1k; 1k0 ÞgjcfIð1kÞ;Hð1k; 1k0 Þgjc0¼c0ðc;t0�tÞ

þak0NkNk0

ðt

t�s
dt0
ð

dcFð1k; 1k0 ÞfIð1kÞ;Hð1k; 1k0 ÞgjcfIð1k0 Þ;Hð1k; 1k0 Þgjc0¼c0ðc;t0�tÞ: (48)

Here k0 ¼ 2 if k ¼ 1 and k0 ¼ 1 if k ¼ 2. The two-particle

function Fðik; jqÞ is obtained by integrating DðCÞ over coor-

dinates and velocities for all particles except ik and jq, and

H(ik,jq) is the two-particle Hamiltonian governing the colli-

sions between ik and jq (see Eq. (12) of Sec. II). The first

term in Eq. (48) describes a collision between particles 1 and

2 of species k, and there are Nk(Nk – 1)/2 such collisions. The

next two terms describe a collision between particle 1 of spe-

cies k and particle 1 of species k0, and there are NkNk0 such

collisions. If for brevity we refer to particles ik and jq as par-

ticles 1 and 2, the two-particle phase-space volume element

dc is given by

dc ¼ dz1dp1dz2dp2dw1dI1dw2dI2dY1dPY1
dY2dPY2

¼ ðmkmqÞ3dzdvzdZdVzdw1dw2v?1dv?1v?2dv?2


 dX1dY1dX2dY2; (49)

where use has been made of the definitions Ij ¼ mjv2
?j=ð2XjÞ

and PYj ¼ mjXjXj, and where (z,vz) are the relative position

and velocity in z and ðZ;VzÞ are the center of mass position

and velocity. These latter two variables do not enter the

Poisson brackets.

Next, we argue that the t0 � t dependence in the dc-inte-

grals of Eq. (48) is even in t0 � t. From Hamiltonian (14), we

see that the Poisson brackets in Eq. (48) involve terms of the

form gl� exp½ilw1 þ i�w2�. The dependence on t0 � t enters

because the second bracket in each product of brackets is

evaluated at the primed phase point C0 ¼ C0ðC; t0 � tÞ. When

the products of brackets are averaged over the random initial

phases of the gyroangles, the resulting time dependence

from the gyroangles is of the form cos½lðw01 � w1Þ
þ�ðw02 � w2Þ� ¼ cos½ðlX1 þ �X2Þðt0 � tÞ�, which is even in

ðt0 � tÞ. The remaining time dependence comes from the rel-

ative coordinate z0 ¼ z0ðz; t0 � tÞ, which enters gl�ðc0Þ. From

Eq. (23), one can see that z0 is unchanged for ðt0 � tÞ !
�ðt0 � tÞ and vk ! �vk, where vk is the value of the relative

velocity vz before the interaction. This is seen most simply

for the simple case where the particles stream without inter-

action and z0 ¼ zþ vzðt0 � tÞ. Of course, f ðcÞ is invariant

under the interchange vz ! �vz, so the dc-integrals are even

in ðt0 � tÞ.
Thus, the integral

Ð t
t�s dt0 in Eq. (48), can be replaced by

the integral 1
2

Ð tþs
t�s dt0. The dt0 integral then extends over the

full duration of a collision, and Eq. (48) can be rewritten as

dhI ki
dt
¼ 1

2
ak

NkðNk � 1Þ
2

ð
dcFð1k; 2kÞ Ið1kÞ þ Ið2kÞ;Hð1k; 2kÞ

� 	
DðIð1kÞ þ Ið2kÞÞð1k ;2kÞ




þ akNkNk0

ð
dcFð1k; 1k0 Þ Ið1kÞ;Hðð1k; 1k0 ÞÞ

� 	
DðIð1kÞÞð1k ;1k0 Þ

þak0NkNk0

ð
dcFð1k; 1k0 Þ Ið1kÞ;Hðð1k; 1k0 ÞÞ

� 	
DðIð1k0 ÞÞð1k ;1k0 Þ

�
; (50)
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where

DðIð1kÞ þ Ið2kÞÞð1k ;2kÞ �
ðtþs

t�s
dt0fIð1kÞ

þ Ið2kÞ;Hð1k; 2kÞgjc0¼c0ðc;t0�tÞ (51)

is the change in (I(1k) þ I(2k)) during a collision between

particles 1k and 2k. The quantities DðIð1kÞÞð1k ;1k0 Þ and

DðIð1k0 ÞÞð1k ;1k0 Þ follow the same notation. These changes

were evaluated in Sec. II.

Next, we note that one coordinate in the dc-integral

can be written as a time integral. Figure 6 shows the (z,vz)

phase space with a typical trajectory for a collision. Such a

trajectory is described by Eq. (23). The dc-integral includes

an integral over the dzdvz plane, and we propose to carry

out the integral by arranging area elements in a sequence

along each phase in the trajectory using the incompressible

nature of the flow, dz0dv0z ¼ dzdvz. Along the trajectory, the

two-particle distribution F is a constant, so it may be eval-

uated at some starting area element before the interaction,

say at dzdvz. At this starting element we set dz ¼ jvzjdt,
where jvzj is the initial relative velocity defined in Eq. (23).

Thus for each element along the trajectory, we have the

integration element dz0dv0z ¼ jvzjdtdvz. The time integral dt
is an integral of the Poisson bracket along the trajectory,

that is, over the course of the collision, and yields the

change in the actions during the collision. Thus, Eq. (50)

reduces to the form

dhI ki
dt
¼ 1

2
ak

NkðNk � 1Þ
2

ð
d~cFð0Þ½DðIð1kÞ þ Ið2kÞÞð1k ;2kÞ�

2þakNkNk0

ð
d~cFð0Þ½DðIð1kÞÞð1k ;1k0 Þ�

2




þ ak0NkNk0

ð
d~cFð0Þ½DðIð1kÞÞð1k ;1k0 Þ�½DðIð1k0 ÞÞð1k ;1k0 Þ�

�
; (52)

where Fð0Þ is the distribution evaluated at a phase point

before the interaction and

d~c ¼ dc
dt
¼ ðmkmqÞ3jvzjdvzdZdVzdw1dw2v?1dv?1v?2dv?2


 dX1dY1dX2dY2: (53)

Here, the subscripts 1 and 2 stand for ik and jq as in Eq. (48).

In this same notation, the distribution before the interac-

tion is given by

Fð0Þ ¼ C exp �Hð1; 2Þ
Tk

� a1I1 � a2I2

� �
; (54)

where C is a normalization constant and

Hð1; 2Þ ¼ mk

2
ðv2

z1 þ v2
?1Þ þ

mq

2
ðv2

z2 þ v2
?2Þ

¼
lkqv

2
z

2
þMkqV2

z

2
þ mkv2

?1

2
þ mqv2

?2

2
: (55)

Here, lkq ¼ mkmq/(mk þ mq) is the reduced mass and Mkq ¼
mk þ mq is the total mass of the two particles. From the nor-

malization
Ð

dcFð0Þ ¼ 1, we find the distribution

Fð0Þ ¼ 1

L6ðmkmqÞ3ð2pÞ2
ffiffiffiffiffiffiffiffiffiffiffi
mkmq
p

2pTk

mkmq

T?kT?q


 exp �
lkqv

2
z

2Tk
�MkqV2

z

2Tk
� mkv2

?1

2T?k
� mqv2

?2

2T?q

� �
; (56)

where L3 is the volume of the plasma and

T?k ¼ Tk=ð1þ akTk=XkÞ.
It is convenient to define the relative, parallel thermal

velocity of a species i particle and a species j particle as

�vij ¼
ffiffiffiffiffi
Tk
lij

s
; (57)

and the magnetization of a species- i particle in interaction

with a species-j particle as

�jij ¼
�bXi

�vij
; (58)

where the distance of closest approach is �b ¼ 2e2=Tk.
Note that because of this definition, the �jij’s are related

to �j11 by ratios of masses

�jij ¼ �j11

m1

mi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mi=m1

ð1þ mi=mjÞ

s
: (59)FIG. 6. A typical trajectory for a collision in the (z,vz) plane. Here, b is the

distance of closest approach, and vk is the velocity at t ¼ 61.
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Specifically,

�j22 ¼ �j11

m1

m2

� �1=2

; (60)

�j12 ¼ �j11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð1þ m1=m2Þ

s
; (61)

and �j21 ¼ �j11

m1

m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð1þ m1=m2Þ

s
: (62)

According to Eqs. (32)–(34), the change in actions depend

on the initial gyroangles /1 and /2. Along any trajectory of

the kind shown in Fig. 6, the gyroangle /j differs from the

wj in the differential for d~c only by a constant, so we can

replace dw1dw2 in the differential with d/1d/2. Also, the

change in actions depend on X1, Y1, X2, Y2 only through

g ¼ jDR?j=b, where jDR?j2 ¼ ðX1 � X2Þ2 þ ðY1 � Y2Þ2, so

in the differential d~c we set dX1dY1dX2dY2 ¼ 2pb2gdgdX2

dY2. The integral over dZdX2dY2 then trivially gives a factor

of L3. The change in actions does not depend on Vz, so the Vz

integral yields
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pTz=Mkq

p
. When substituting Eq. (56) for

Fð0Þð1; 2Þ, one must be careful to identify the species of par-

ticles 1 and 2. For example, in the first term of Eq. (52) both

1 and 2 are of species k, and in the second and third terms,

particles 1 and 2 are of species k and k0. Making these substi-

tutions and using the relations I k ¼ NkT?k=Xk and ak=Xk

¼ ð1=T?k � 1=TkÞ yields the result

dT?k

dt
¼ ðTk � T?kÞ½nk

�b
2
�vkk �

ffiffiffiffiffiffi
2p
p

8
K1ð�jkkÞ

þ nk0
�b

2
�vkk0 �

ffiffiffiffiffiffi
2p
p

4

lkk0

mk
K1ð�jkk0 Þ�

þ ðak � ak0 ÞT?kT?k0

Xk0
� l2

kk0

mkmk0


 nk0
�b

2
�vkk0

�jkk0�jk0k

ffiffiffiffiffiffi
2p
p

2
K2ðj�jkk0 � �jk0kjÞ; (63)

where

K1ð�jÞ ¼
ð1

0

dr
r

ð1
0

g3dgf 2
1

�j
r3
; g

� �
e�r2=2 (64)

K2ð�jÞ ¼
ð1

0

drr3

ð1
0

gdgf 2
2

�j
r3
; g

� �
e�r2=2: (65)

In Appendix A, we obtain the large �j asymptotic limits

K1ð�jÞ ¼ 3:10�j�7=15e�5ð3p�jÞ2=5=6; (66)

K2ð�jÞ ¼ 3:87�j13=15e�5ð3p�jÞ2=5=6: (67)

For the strong magnetization ordering �jij � j�j12 � �j21j � 1,

we note that K1ð�jijÞ � K2ðj�j12 � �j21jÞ.
Here, the last term on the Right Hand Side of Eq. (63)

describes the rapid relaxation where particles of species k
collide with particles of species k0 and exchange cyclotron

actions. As one would expect, this term is proportional to

ðak � ak0 Þ and vanishes when ak ¼ ak0 . The first term

describes the slow relaxation where the total cyclotron action

is broken and liberated (or absorbed) cyclotron energy is

exchanged with parallel energy. As one would expect, this

term is proportional to Tk � T?k, and vanishes when

Tk ¼ T?k. Note here that ðTk � T?kÞ is proportional to ak, so

one may equally say that the term vanishes when ak ¼ 0.

Also, note that when the two species are the same (i.e., when

k ¼ k0) and when ak ¼ ak0 , the rate equation reduces to that

obtained in the work of O’Neil and Hjorth.4 Finally, we will

argue in Sec. IV that Eq. (63) is an easy place to generalize

the treatment to more than two species. One simply sums k0

over all species except k0 ¼ k.

Next, we introduce scaled variables. The thermodynamic

variables Tk; a1 and a2 are the three unknowns, which we scale

as T̂k ¼ Tk=Tk0 and âk ¼ akTk0=X1, where Tk0 ¼ Tkð0Þ is the

initial value of Tk. An equivalent set of thermodynamic varia-

bles is the three temperatures Tk, T?1 and T?2; we scale the

perpendicular temperatures as T̂?k ¼ T?k=Tk0. âk and T̂?k are

related by âk ¼ ðm1=mkÞð1=T̂?k � 1=T̂kÞ. The actions are

scaled as hÎ ki ¼ hI kiðX1=Tk0Þ. We introduce a scaled time

t̂ ¼ tn�b
2

0�v11;0, where again subscripts zero refer to initial values

and n�b
2
�v11 ¼ n�b

2

0�v11;0ðTk0=TkÞ3=2
. The magnetization param-

eter �jij is already dimensionless, but does have a temperature

dependence �jij ¼ �jij;0ðTk0=TkÞ3=2
. Following the same nota-

tion, we write density ratios as n̂k ¼ nk=n The scaling removes

dependence on the total density n, and dependence on B enters

only in the combination with Tk0 through the magnetization pa-

rameter �j11;0. As we will see, the solution depends only on the

initial values of the scaled thermodynamic variables, the initial

magnetization strength �j11;0 ¼ X1
�b0=�v11;0, the mass ratio

m1/m2, and the density ratios n̂k ¼ nk=n.

In terms of these scaled variables, Eq. (63) takes the

form

dT̂?k

dt̂
¼ âk

Ĝk

n̂k
þ ðâk � âk0 Þ

K̂k

n̂k

" #
m1

mk
; (68)

where

Ĝk ¼
T̂?k

T̂
1=2

k

� mk

m1

� �3=2
ffiffiffiffiffiffi
2p
p

8


 n̂2
kK1ð�jkkÞ þ n̂kn̂k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ mk=mk0

s
K1ð�jkk0 Þ

" #
(69)

regulates equipartition of T̂?k with T̂k on the slower time-

scale, and

K̂k ¼
T̂?kT̂ k0

T̂k
3=2
� n̂kn̂k0

ffiffiffiffiffiffi
2p
p

8
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mk

m1

mk0

m1

� �3
2m1

mk þ mk0

s


 K2ðj�jkk0 � �jk0kjÞ
�j2

11

(70)

regulates equipartition of ak with ak0 on the faster timescale.

The statement of conservation of energy in Eq. (41) can be

rewritten as the relation,
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T̂kðtÞ ¼ 1þ 2fn̂1½T̂?1ð0Þ � T̂?1ðtÞ� þ n̂2½T̂?2ð0Þ � T̂?2ðtÞ�g:
(71)

This equation plus Eq. (68) for k ¼ 1 and 2 and the relation

âk ¼ ðm1=mkÞð1=T̂?k � 1=T̂kÞ determine the evolution of

the three unknowns Tk; T?1 and T?2 (or equivalently Tk; a1

and a2).

To obtain equations for â1ðtÞ and â2ðtÞ alone, we com-

bine Eq. (68) with the relations

dâk

dt̂
¼ m1

mk

1

T̂
2

k

dT̂ k
dt̂
� 1

T̂
2

?k

dT̂?k

dt̂

0
@

1
A; (72)

0 ¼ 1

2

dT̂k
dt̂
þ n̂1

dT̂?1

dt̂
þ n̂2

dT̂?2

dt̂
: (73)

The result is

dâ1

dt̂
¼ ��̂11â1 � �̂12â2 � Ĉ1ðâ1 � â2Þ; (74)

dâ2

dt̂
¼ ��̂21â1 � �̂22â2 � Ĉ2ðâ2 � â1Þ; (75)

where the �̂ ij’s and the Ĉk’s are given by

�̂ ij ¼
�

dijm
2
1

T̂
2

?in̂im2
i

þ 2m2
1

T̂
2

kmimj

�
Ĝj; (76)

Ĉk ¼
�

m2
1

T̂
2

?kn̂km2
k

þ 2ð1� mk=mk0 Þ
T̂

2

km
2
k=m2

1

�
K̂k; (77)

and T̂?k ¼ T̂ k=ð1þ âkT̂kmk=m1Þ. In these coefficients, T̂ kðtÞ
and T̂?kðtÞ are determined by Eq. (71) and the relation

T̂?k ¼ T̂k=ð1þ âkT̂kmk=m1Þ.

Analytic progress in solving Eqs. (74) and (75) is possi-

ble in two separate limits. We first discuss the solutions in

these limits and then solve the equations numerically for var-

ious values of the parameters, verifying the limiting behav-

iors expected from the analytic solutions.

For sufficiently strong magnetization, the K̂k and Ĝj

integrals satisfy the inequality K̂1; K̂2 � Ĝ1; Ĝ2, and the col-

lisional relaxation takes place on two timescales. By sub-

tracting Eq. (75) from Eq. (74) and neglecting Ĝ1 and Ĝ2

compared to K̂1; K̂2, we obtain the equation

d

dt̂
ðâ1 � â2Þ ¼ ��̂aðâ1 � â2Þ; (78)

where

�̂a ¼ Ĉ1 þ Ĉ2 ¼ K̂1 �
1

T̂
2

?1n̂1

þ 1

T̂
2

?2n̂2

m2
1

m2
2

þ 2ð1�m1=m2Þ2

T̂
2

k

2
4

3
5

(79)

is the rate at which â1 and â2 relax to a common value â.

At a slower rate, â relaxes to zero. To obtain this rate,

we multiply Eq. (74) by Ĉ2 and Eq. (75) by Ĉ1 and add to

obtain the result

Ĉ2

dâ1

dt̂
þ Ĉ1

dâ2

dt̂
¼ �Ĉ2ð�̂11â1 þ �̂12â2Þ

� Ĉ1ð�̂21â1 þ �̂22â2Þ: (80)

The large quantity K̂1 enters the Ĉj on both sides of this

equation and cancels, leaving a slow rate of order Ĝj. Setting

â1 ¼ â2 ¼ â, then yields the equation

dâ
dt̂
¼ ��̂bâ; (81)

where

�̂b ¼
Ĉ2ð�̂11þ �̂12Þ

Ĉ1þ Ĉ2

þ Ĉ1ð�̂21þ �̂22Þ
Ĉ1þ Ĉ2

¼
X2

k¼1

m2
1=m2

k0

T̂
2

?k0 n̂k0

þ 2m1=mk0 ðm1=mk0 � 1Þ
T̂

2

k

2
4

3
5 � 2m1=mkð1þm1=mkÞ

T̂
2

k

þm2
1=m2

k

T̂
2

?kn̂k

2
4

3
5Ĝk

8<
:

9=
; � 1

T̂
2

?1n̂1

þm2
1=m2

2

T̂
2

?2n̂2

þ 2ð1�m1=m2Þ2

T̂
2

k

2
4

3
5
�1

(82)

is the rate at which â decays to zero, and hence from the rela-

tion âk ¼ ðm1=mkÞð1=T̂?k � 1=T̂kÞ, the rate at which T̂?1

and T̂?2 approaches T̂k.
Of course, this approximate solution is only accurate

to order jĜj=K̂kj � 1. For example, â1ðtÞ � â2ðtÞ does

not decay to exactly zero during the first phase of the

evolution but rather to the small value ðâ1 � â2Þ ’
½ð�̂22 þ �̂21 � �̂11 � �̂12Þ=ðĈ1 þ Ĉ2Þ�â � OðĜj=K̂kÞâ � â.

One can understand this by setting dâ1=dt̂; dâ2=dt̂ � 0 in

Eqs. (74) and (75) and solving for â1 � â2.

Another analytic solution is possible when â1 and â2

are small, and Eqs. (74) and (75) may be treated as lin-

ear coupled equations with constant coefficients �̂ ij and

Ĉj. In these coefficients, one must set T̂k ¼ T̂?1

¼ T̂?2 ¼ T̂ . A normal mode analysis9 then yields the

solution
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â1ðtÞ
â2ðtÞ

� �
¼ Cþ

â1þ
â2þ

� �
eŜþ t̂ þ C�

â1�
â2�

� �
eŜ� t̂ ; (83)

where Cþ and C– are constants determined by the initial val-

ues â1ð0Þ and â2ð0Þ, the damping decrements Ŝþ and Ŝ� are

given by

Ŝ6 ¼
1

2
�ð�̂22 þ �̂11 þ Ĉ1 þ Ĉ2Þ6½ð�̂22 þ �̂11 þ Ĉ1 þ Ĉ2Þ2
n
� 4½ð�̂11�̂22 � �̂12�̂21 þ ð�̂11 þ �̂12ÞĈ2

þð�̂22 þ �̂21ÞĈ1Þ��1=2
o
; (84)

and the eigenvectors by

â1þ

â2þ

 !
¼ Ĉ1 � �̂12

Ŝþ þ �̂11 þ Ĉ1

 !
;

â1�

â2�

 !
¼ Ĉ1 � �̂12

Ŝ� þ �̂11 þ Ĉ1

 !
: (85)

In the strongly magnetized limit where Ĉj � �̂ ij, we

recover the previous solution. The damping decrements are

approximately

Ŝ� ’ �ðĈ1þ Ĉ2Þ; Ŝþ ’ �
ð�̂11þ �̂12ÞĈ2þ ð�̂22þ �̂21ÞĈ1

Ĉ1þ Ĉ2

;

(86)

in agreement with Eqs. (79) and (82). In this limit, the jþi
eigenvector is proportional to

â1þ
â2þ

� �
¼

1

1þ ð�̂11 þ �̂12 � �̂21 � �̂22Þ
Ĉ1 þ Ĉ2

0
@

1
A; (87)

and ½â1ðtÞ � â2ðtÞ� evolves to near zero on the timescale

S�1
� ’ 1=ðC1 þ C2Þ. As mentioned earlier, the correction

is of order ð�̂11 þ �̂12 � �̂21 � �̂22Þ=ðĈ1 þ Ĉ2Þ � OðĜj=K̂kÞ
� 1.

When the Ĉk’s are comparable to the �̂ ij, the separation

in timescales between Ŝþ and Ŝ� no longer exists. This is

the case when magnetization is low or the ion mass differ-

ence between the two species is large. However, we note

again that our rates only apply to the strong magnetization

regime j�j12 � �j21j � 1. If magnetization is low and

j�j12 � �j21j�1, the timescale in which particles of different

species exchange cyclotron action is comparable to the time-

scale of a few collisions. Over this timescale, the distribution

would not be cast into the modified Maxwellian in Eq. (38)

as assumed.

We convert the rate equations back to unscaled version

for easier reference, using the definitions of the scaled physi-

cal quantities. The unscaled version of Eqs. (74) and (75) is

dak

dt
¼ ��kkak � �kk0ak0 � Ckðak � ak0 Þ; (88)

where

�kl ¼
2XkXl

nT2
k
þ X2

kdkl

nkT2
?k

 !
Gk; (89)

Ck ¼
X2

k

nkT2
?k

þ 2XkðXk � Xk0 Þ
nT2
k

" #
Kk; (90)

and

Gk ¼
TkT?k

X2
k

n2
k
�b�vkk

ffiffiffiffiffiffi
2p
p

8
K1ð�jkkÞ

�

þnknk0
�b�vkk0

ffiffiffiffiffiffi
2p
p

4

lkk0

mk
K1ð�jkk0 Þ

�
; (91)

Kk ¼
T?kT?k0

XkXk0

l2
kk0

mkmk0

nknk0
�b

2
�vkk0

�jkk0�jk0k

ffiffiffiffiffiffi
2p
p

2
K2ðj�jkk0 � �jk0kjÞ: (92)

Then in the first stage of equilibration,

d

dt
ða1 � a2Þ ¼ ��aða1 � a2Þ; (93)

where

�a ¼
X2

1

n1T2
?1

þ X2
2

n2T2
?2

þ 2ðX1 � X2Þ2

nT2
k

" #
K1: (94)

And then in the next stage of equilibration, where a1 ¼ a
¼ a2

da
dt
¼ ��ba; (95)

where

�b ¼
C2ð�11 þ �12Þ þ C1ð�21 þ �22Þ

C1 þ C2

¼
"X2

k¼1

�
2Xk0 ðXk0 � XkÞ

nT2
k

þ X2
k0

nk0T2
?k0

�



�

2XkðXk þ Xk0 Þ
nT2
k

þ X2
k

nkT2
?k

�
Gk

#


 X2
1

n1T2
?1

þ X2
2

n2T2
?2

þ 2ðX1 � X2Þ2

nTk

" #�1

: (96)

Next, we consider three numerical integrations of (74) and

(75). For both the first and the second integrations, we choose

n̂1 ¼ n̂2 ¼ 1=2 for convenience, and m2/m1 ¼ 25/24, as that is

the mass ratio of two common constituent ions in a pure ion

plasma, namely Mgþ25 and Mgþ24.6,7 For all the cases, the lighter

ion has a mass of m1 ¼ 24mp, where mp is the proton

mass. We choose the total density to be n ¼ 105 cm– 3. The

parallel temperature Tk is assumed to be in the range where the

plasma is weakly correlated, i.e., Ccorr < 1, where Ccorr

¼ ð4pn=3Þ1=3e2=Tk is the coupling parameter.14 This requires

Tk > 1:1
 10�5 eV. We also choose the magnetic field to be

B¼ 60 kG, a value that was realized in past experiments.1,2
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The first integration is for a case of strong magnetization

�j11;0 ¼ 80:0 and correspondingly �j12;0 � �j21;0 ¼ 3:2. The

initial parallel temperature Tk0 under this value of �j11;0 is 4.5


10–5 eV. With this temperature, the system has a weak cor-

relation of Ccorr ¼ 0:24. For such a density and temperature,

the collision rate is n�b
2

0�v11;0 ¼ 7:7
 103 s�1. Also, the initial

scaled perpendicular temperatures are taken to be T̂?1;0

¼ 0:5 and T̂?2;0 ¼ 0:25. The evolution of â1 and â2 is shown

in Fig. 7 and of T̂?1; T̂?1 and T̂k in Fig. 8. In this case, the

separation of timescales is clearly apparent. â1 and â2 evolve

to a common value in a time of 10 s and then evolve to zero

in the longer time of 1000 s, or 17 min. Note in both figures

that the abscissa is a logarithmic scale. As Tk decreases dur-

ing the final relaxation, the magnetization �j11 / T
�3=2

k rises

and the equipartition rate, which has the exp½�5ð3p�j2=5
11 Þ=6�

dependence, is exponentially suppressed. This accounts for

the fact that the final equipartition takes place over a long

three decades of time. In Fig. 8, the temperatures T̂?1 and

T̂?2 have slightly different values even after â1 and â2 have

reached common value because of the mass dependence in

the relation T̂?k ¼ T̂ kð1þ âkT̂kmk=m1Þ. Note that the cor-

rection in Eq. (87) is not visible on the scale of the figures.

The second case, as shown in Figs. 9 and 10, is for a

case where the initial parallel temperature is lower than the

perpendicular temperatures, but the magnetization and ion

masses stay the same as in the first case. The first

equipartition, when â1 and â2 are approaching to the same

value, has similar duration as in the previous case, but the

final equipartition occurs over an exponentially much shorter

duration of 20 s than in that previous case, as the increase in

parallel temperature speeds up equipartition exponentially.

The third integration is for a case of strong magnetization,

but large ion mass difference between the two species.

�j11;0 ¼ 80:0 and �j12;0 � �j21;0 ¼ 24:7, with a choice of m2/m1

¼ 1.4. The values of n and Tk;0 are the same as in the previous

cases. In this case, the rate �̂a � Oðexp½�5ð3pj�j12

��j21j2=5Þ=6�=�j2
11Þ of the first equipartition is comparable to

the rate �̂b � Oðexp½�5ð3p�j2=5
11 Þ=6�Þ of the second stage. The

thermodynamic variables â1 and â2 decay to zero without

equilibrating first to a common value, and the temperatures

T̂k; T̂?1 and T̂?2 converge to the same value, as in Figs. 11

and 12.

IV. DISCUSSION

The analysis of Sec. III assumes that the ion plasma is

immersed in a uniform neutralizing background charge. For

the case of a single species ion plasma, a laboratory realiza-

tion of this simple theoretical model is a pure ion plasma in a

Malmberg-Penning trap.17 Rotation of the plasma in the uni-

form axial magnetic field of the trap induces a radial electric

field and a radial centrifugal force that can be thought of as

arising from an imaginary cylinder of uniform neutralizing

FIG. 7. The time evolution of â1 and â2 for the case of �j11;0 ¼ 80:0, m2/m1

¼ 25/24 and n̂1 ¼ n̂2 ¼ :5. Here, n�b
2

0�v11;0 ¼ 7:7
 103 s�1 and Tk0 ¼ 4:5

10�5 eV.

FIG. 8. The time evolution of T̂?1; T̂?2 and T̂ k for the case of �j11;0 ¼ 80:0,

m2/m1 ¼ 25/24 and n̂1 ¼ n̂2 ¼ :5. Here, n�b
2

0�v11;0 ¼ 7:7
 103 s�1 and

Tk0 ¼ 4:5
 10�5 eV.

FIG. 9. The time evolution of â1 and â2 for the case of �j11;0 ¼ 80:0,

m2/m1¼ 25/24 and n̂1 ¼ n̂2 ¼ :5. Here n�b
2

0�v11;0 ¼ 7:7
 103 s�1 and

Tk0 ¼ 4:5
 10�5 eV.

FIG. 10. The time evolution of T̂?1; T̂?2 and T̂ k for the case of �j11;0 ¼ 80:0,

m2/m1¼ 25/24, and n̂1 ¼ n̂2 ¼ :5. Here, n�b
2

0�v11;0 ¼ 7:7
 103 s�1 and Tk0
¼ 4:5
 10�5 eV.

042115-12 Chim, O’Neil, and Dubin Phys. Plasmas 21, 042115 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.239.69.167 On: Wed, 18 Mar 2015 17:53:47



background charge.14,18 The Gibb’s distribution for the mag-

netically confined single-species plasma differs only by rigid

rotation from that for a plasma confined by a cylinder of neu-

tralizing charge.14,18

However, there is a caveat to this equivalence for the

case of a pure ion plasma with different mass species. The

rotation can give rise to centrifugal separation of the spe-

cies.6,19,20 A parameter that determines the degree of separa-

tion is the quantity x2jm2 � m1jr2
p=Tk, where x is the plasma

rotation frequency and rp is the radius of the cylindrical

plasma column. We assume that this quantity is small com-

pared to unity so that centrifugal separation is negligible and

the equivalence is preserved. Note that x varies inversely

with magnetic field strength,14 so small x2jm2 � m1jr2
p=Tk

can be consistent with strong magnetization.

For a plasma in a Malmberg-Penning trap, the

Hamiltonian H and the actions I k are to be interpreted as the

Hamiltonian and actions in the rotating frame of the plasma.

To be precise, the actions are defined in the local drift

frame,21 but for the plasmas of interest, the difference

between the local drift velocity and the local plasma velocity

(i.e., rx) is negligibly small, that is, small compared to the

thermal velocity.

Another caveat concerns the statement of conservation

of kinetic energy in Eq. (63). In some experiments heating

processes have rates that are comparable to the rate at which

the ak’s relax. If the heating process is understood and the

rate can be quantified in a formula, the heating rate should

replace the zero on the Left Hand Side of Eq. (73).

Alternatively, one can proceed empirically and measure

TkðtÞ, say using Laser Induced Fluorescence,17 and then use

Eq. (63) to determine the evolution of T?1ðtÞ and T?2ðtÞ, or

equivalently of a1(t) and a2(t). Of course, the relaxation of

the a’s can occur on two timescales, and it may be that the

heating is negligible for the relatively rapid relaxation of

a1(t) and a2(t) to a common value, but not negligible on the

longer timescale where that common value relaxes to zero.

Finally, there is the question of how the theory should

be generalized for the case of three or more isotopic ions. In

the discussion following Eq. (63), we noted that this can

accomplished by summing the Right Hand Side over k0 for

k0 6¼ k. In terms of scaled variables, one can sum over k0 for

subscript k0 6¼ k on the Right Hand Side of Eq. (68). Note

that subscript k0 is also implicitly hidden in the expressions

(69) and (70) for Gk and Kk. Equation (68) then provides k
equations for the T?k. Also, Eq. (73) for conservation of

energy must be modified by summing over terms for each

T?k. This generalization is valid because we keep the

assumption of the dominance of uncorrelated binary colli-

sions, among particles of all the k species.
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APPENDIX: EVALUATION OF INTEGRALS K1 AND K2

In this Appendix, we evaluate the integrals

K1ð�jÞ ¼
ð1

0

dr
r

ð1
0

g3dgf 2
1

�j
r3
; g

� �
e�r2=2; (A1)

K2ð�jÞ ¼
ð1

0

drr3

ð1
0

gdgf 2
2

�j
r3
; g

� �
e�r2=2; (A2)

where

f1ðj; gÞ ¼
ð1
�1

cosðjnÞdn

½g2 þ f2ðnÞ�3=2
; (A3)

f2ðj; gÞ ¼
ð1
�1

cosðjnÞdn

½g2 þ f2ðnÞ�3=2
1� 3g2

2½g2 þ f2ðnÞ�

� �
: (A4)

Here, fðnÞ satisfies the differential equation

df
dn

� �2

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ f2ðnÞ

q ¼ 1; (A5)

where n ¼ is chosen so that f2ðnÞ is even in n. This is the

case when f2ð0Þ ¼ maxð0; 1� g2Þ. Also, note that in Eqs.

(A3) and (A4) j stands in for j ¼ �j=r3.

FIG. 11. The time evolution of â1 and â2 for the case of �j11;0 ¼ 80:0 and

j�j21;0 � �j12;0j ¼ 24:7. Here, m2/m1 ¼ 1.4, n̂1 ¼ n̂2 ¼ :5; n�b
2

0�v11;0 ¼
7:7
 103 s�1 and Tk0 ¼ 4:5
 10�5 eV.

FIG. 12. The time evolution of T̂?1; T̂?2 and T̂ k for the case of �j11;0 ¼ 80:0
and j�j21;0 � �j12;0j ¼ 24:7. Here m2/m1 ¼ 1.4, n̂1 ¼ n̂2 ¼ :5; n�b

2

0�v11;0

¼ 7:7
 103 s�1, and Tk0 ¼ 4:5
 10�5 eV.
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For large �j, the integrands in Eqs. (A3) and (A4)

involve the product of a rapidly oscillating function and a

slowly varying function, and efficient evaluation of such

integrals can be effected through analytic continuation.

Following the earlier work of O’Neil and Hjorth,4 we define

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ f2ðnÞ

q
, which satisfies the differential equation

dx

dn
¼ i

ffiffiffiffiffiffiffiffiffiffiffi
x� g
p ffiffiffiffiffiffiffiffiffiffiffi

xþ g
p ffiffiffiffiffiffiffiffiffiffiffi

x� 1
p

x
ffiffiffiffiffiffi
�x
p ; (A6)

where xðn ¼ 0Þ ¼ maxðg; 1Þ. In the square roots of Eq. (A6),

the branch cut for any function
ffiffiffiffiffiffiffiffiffiffi
wðxÞ

p
is taken along

argwðxÞ ¼ 0. The Right Hand Side of Eq. (A6) then

has branch cuts for x < �g; 0 < x < minðg; 1Þ and

x > maxðg; 1Þ.
We first consider the case where g < 1, that is, where

there is reflection. The case of no reflection ðg > 1Þ follows

similarly. For g < 1, the branch cuts are indicated by the

thick solid lines in Fig. 13(b). As n moves from �1 to 1
along the dashed contour in Fig. 13(a), xðnÞ moves along the

dashed contour in Fig. 13(b), reaching the turning point x ¼
1 at n ¼ 0, i.e. x(0) ¼ 1. Because xðnÞ is even in n, the inte-

grals in Eqs. (A3) and (A4) can be rewritten as

f1ðj; gÞ ¼
ð

C

expðijnÞdn
x3ðnÞ ; (A7)

f2ðj; gÞ ¼
ð

C

expðijnÞdn
x3ðnÞ 1� g2

x2ðnÞ

� �
: (A8)

The goal here is to analytically continue the n-contour so

that the integrands themselves exhibit the exponentially

small value of the integrands, so we push the n-contour to-

ward positive imaginary values. The deformation can con-

tinue until the xðnÞ contour collides with the branch cut

ending at x ¼ g as shown in Figs. 14(a) and 14(b).

During the deformation, the turning point moves from x
¼ 1 to x ¼ g, and n-image of the turning point moves from

n ¼ 0 to

n ¼ igðgÞ ¼ i

ð1

g

x2=3dxffiffiffiffiffiffiffiffiffiffiffi
1� x
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � g2
p ; (A9)

where use has been made of Eq. (A6). The two points around

which the x-contour loop are the images of x ¼ 0 approached

from opposite sides of the branch cut between x ¼ 0 and

x ¼ g. From Eq. (A6), we see that the coordinates of these

two points in the complex n-plane are n ¼ igðgÞ6rðgÞ,
where

rðgÞ ¼
ðg

0

x2=3dxffiffiffiffiffiffiffiffiffiffiffi
1� x
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � x2
p : (A10)

FIG. 14. Path (dashed curve) of the

deformed contour in n-plane (a) and x-

plane (b). Branch cuts are denoted by

thick solid lines, and in this figure,

g ¼ 0:5.

FIG. 13. Path (dashed curve) of the

original contour in n-plane (a) and x-

plane (b). Branch cuts are denoted by

thick solid lines, and in this figure,

g ¼ 0:5.
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There is a branch cut between the two points in the function

xðnÞ.
Since the singularities of the integrands in Eqs. (A7) and

(A8) involve more than just isolated poles, the integrals cannot

be expressed as the sum of residues. Nevertheless, for suffi-

ciently large j, one can see that the integrals are of order

exp½�gðgÞj�, that is, one obtains the asymptotic forms

fjðj; gÞ ¼ hjðj; gÞexp½�gðgÞj� quoted in Eqs. (20) and (21) of

Sec. II. Here, the quantities hjðj; gÞ are neither exponentially

small nor large, and for small g are given by4 hjðj; gÞ ’ 8pj=9.

The integrals also are evaluated by numerically carrying

out the n-integral along the deformed contour in Fig. 14(a).

Fig. 1 of Sec. II shows a comparison of the numerical and as-

ymptotic evaluations of f1ðj; g ¼ 0Þ ¼ f2ðj; g ¼ 0Þ.
Returning to an evaluation of integrals (A3) and (A4),

we first note that gðgÞ is an increasing function of g. Thus, for

sufficiently large values of �j, only small values of g contribute

to the integrals, and we may use the approximation

hjðj; gÞ ’ hjðj; 0Þ ¼ 8pj=9, or hjð�j=r3; gÞ ’ hjðj; 0Þ
¼ 8p�j=ð9r3Þ. Also, for small values of g, one can see by curve

fitting that gðgÞ ’ p=2þ kg3=2, where k ¼ 0.874 (see Fig. 15).

The integrations over g can then be carried out in Eqs. (A3)

and (A4) yielding the integrals

K1ð�jÞ ¼
8p
9

� �2 �j2

ð2�jkÞ8=3
� 2
3
C

8

3

� �ð1
0

drre�r2=2e�p�j=r3

;

(A11)

K2ð�jÞ ¼
8p
9

� �2 �j2

ð2�jkÞ4=3
� 2
3
C

4

3

� �ð1
0

drre�r2=2e�p�j=r3

:

(A12)

The r-integrals in these two equations are identical and

involve the product of an exponentially decreasing function,

expð�r2=2Þ, and an exponentially increasing function,

expð�p�j=r3Þ. Evaluating the integrals by the saddle point

method yields the large �j asymptotic formulae,

K1ð�jÞ ¼ 3:10�j�7=15e�5ð3p�jÞ2=5=6; (A13)

K2ð�jÞ ¼ 3:87�j13=15e�5ð3p�jÞ2=5=6: (A14)

Numerical evaluations of K1ð�jÞ and K2ð�jÞ have been

carried out for a series of �j values. At each of these val-

ues, the quantities hjð�j=r3; gÞ are evaluated for an array

of ðr; gÞ values using the analytic continuation described

earlier. The integrands are peaked near some values

ðr0; g0Þ, and the ðr; gÞ integrands are evaluated by choos-

ing ðr; gÞ values near the peak and smoothly interpolating

the integrand between these points. The results of the inte-

gration are given for a series of �j values in Tables I and

II. Also, Figs. 16 and 17 show a comparison of the nu-

merical evaluations (dots) and the asymptotic formulae

(solid curves).

We can compare our results with previous work. If we

consider equipartition of a strongly magnetized single-

species plasma, where n ¼ n1 and n2 ¼ 0, T?1 equilibrates

with Tk following the rate equation

dT?1

dt
¼ ðTk � T?1Þ�n1

�b
2
�v11Ið�j11Þ; (A15)

where Ið�j11Þ ¼
ffiffiffiffiffiffi
2p
p

K1ð�j11Þ=8 from Eq. (63). The function

Ið�jÞ was evaluated in the work of O’Neil and Hjorth4 and

Glinksy et al.3 In Fig. 18, numerical values of Ið�jÞ in our

work are plotted as points together with values obtained by

Glinsky et al. using Monte Carlo simulations. The different

FIG. 15. Curve fitting of gðgÞ against g, showing that gðgÞ � gð0Þ � Oðg3=2Þ.

TABLE I. Numerically integrated values of K1ð�jÞ for different values of �j.

�j K1ð�jÞ �j K1ð�jÞ

5 0.222 200 5.06 
 10�8

10 5.06 
 10�2 300 6.92 
 10�10

20 7.71 
 10�3 500 1.29 
 10�11

50 2.41 
10�4 700 2.89 
 10�13

100 5.95 
10�6 1000 3.15 
 10�15

TABLE II. Numerically integrated values of K2ð�jÞ for different values of �j.

�j K2ð�jÞ �j K2ð�jÞ

0.01 3.250 20 2.837 
 10�1

0.05 3.230 50 3.074 
 10�2

0.1 3.201 100 2.338 
 10�3

0.7 2.850 200 4.989 
 10�5

2 2.419 350 1.685 
 10�6

6 1.251 500 4.195 
 10�8

10 7.523 
 10�1

FIG. 16. Numerically integrated values of K1ð�jÞ (dots) and its asymptotic

graph (red line).
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sets of values follow very close trends. Furthermore, in the

limit of large �j, O’Neil and Hjorth obtained an asymptotic

formula for Ið�jÞ

Ið�jÞ ¼ 0:47�j�1=5exp � 5

6
ð3p�jÞ2=5

� �
; (A16)

while the asymptotic formula from Glinsky et al. is

Ið�jÞ ¼ ð1:83�j�7=15 þ 20:9�j�11=15 þ 0:347�j�13=15

þ87:8�j�15=15 þ 6:68�j�17=15Þexp � 5

6
ð3p�jÞ2=5

� �
:

(A17)

From Eq. (A13), our version is

Ið�jÞ ¼ 0:97�j�7=15exp � 5

6
ð3p�jÞ2=5

� �
: (A18)

Our asymptotic formula is an improved version of the work of

O’Neil and Hjorth. We approximate gðgÞ with g3=2 as the

lowest-order non-constant term, which is more accurate than g2

in the work of O’Neil and Hjorth. However, we believe the

result from Glinsky et al. is even better, since their work inves-

tigated the cyclotron motion in much greater detail. In the same

Fig. 18, we plot the graphs of the three asymptotic expressions

together with the points of numerically integrated values men-

tioned above. All the plotted graphs and data points show the

similar exponential decrease of Ið�jÞ with increasing �j.
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FIG. 17. Numerically integrated values of K2ð�jÞ (dots) and its asymptotic

graph (red line).
FIG. 18. Numerical values and asymptotic graphs of Ið�jÞ. Solid triangles

correspond to our calculated values. Empty circles and squares are values

calculated by Glinsky et al. using two different sets of Monte Carlo simula-

tions.3 The solid line is the graph of our asymptotic expressions. The dashed

and dot-dashed curves corresponds to the asymptotic expressions from

O’Neil and Hjorth and Glinsky et al., respectively.
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