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This paper provides a simple mechanistic interpretation of the resonant wave-particle interaction of

Landau. For the simple case of a Langmuir wave in a Vlasov plasma, the non-resonant electrons

satisfy an oscillator equation that is driven resonantly by the bare electric field from the resonant

electrons, and in the case of wave damping, this complex driver field is of a phase to reduce the os-

cillation amplitude. The wave-particle resonant interaction also occurs in waves governed by 2D

E�B drift dynamics, such as a diocotron wave. In this case, the bare electric field from the reso-

nant electrons causes E�B drift motion back in the core plasma, reducing the amplitude of the

wave. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4948480]

I. INTRODUCTION

This paper provides a re-interpretation of the resonant

wave-particle interaction of Landau.1 There are two halves to

this interaction: first there is the influence of the wave on the res-

onant particles and second the influence of the resonant particles

back on the wave. The mechanisms for the two halves of the

interaction are usually described differently. For the first half,

the mechanism is obvious; the wave electric field acts on the

resonant particles and produces a perturbation in the resonant

particle charge density. The mechanism for the second half of

the interaction is usually described through Poisson’s equation,

or equivalently, a dispersion relation that follows from Poisson’s

equation; the perturbed charge density from the resonant par-

ticles makes a small correction to the dispersion relation, and

this correction yields a small imaginary frequency shift, which

is the damping decrement for the wave. In contrast, here we pro-

vide a mechanical interpretation of the second half of the inter-

action that is similar to the interpretation of the first half.

Consider the simple case of a Langmuir wave that is

excited in a collisionless, Maxwellian plasma, with the wave

phase velocity well out on the tail of the velocity distribu-

tion. We will see that the wave induced displacement of the

non-resonant electrons, that is, the electrons in the main part

of the Maxwellian, satisfies an oscillator equation that is

driven by the bare electric field from the perturbed charge

density of the resonant electrons. This field drives the oscil-

lator resonantly, since the resonant electrons travel at the

phase velocity of the wave. From this perspective, the wave

damping simply results from the action of the driver field

from the resonant electrons back on the oscillator.

The interpretation does not specify the perturbed charge

density of the resonant particles, so the interpretation applies

equally well to the cases of linear Landau damping and

growth and to the case of a large amplitude wave with non-

linear, trapped particle orbits. In general, the portion of the

drive field that is 90� out of phase with the oscillator pro-

duces damping or growth and the portion that is in phase pro-

duces a frequency shift.

Because Landau’s analysis of the damping was rather

formal and did not offer a physical interpretation,2 other

authors have provided physical interpretations. Here, we find

a particularly simple interpretation by focusing on only half

of the wave-particle interaction: namely, the influence of the

resonant particles back on the wave.

One usually thinks of Landau resonances in connection

with waves in a collisionless plasma, that is, waves that are

described by Vlasov dynamics, but such resonances also occur

for waves that are described by 2D E�B drift dynamics. A

simple example is a diocotron wave that is excited on a non-

neutral plasma column in a Penning-Malmberg trap.3–6 The

analysis is simplest for the case where the plasma column con-

sists of a high-density core surrounded by a relatively low-

density halo. The diocotron wave can be thought of as a surface

wave that propagates azimuthally around the core. At some

critical radius in the halo, the azimuthal E�B drift rotation ve-

locity of the halo fluid elements matches the phase velocity of

the wave potential, and the resonant interaction of the wave

potential and fluid elements gives rise to Landau damping.

In the standard analysis, the linearized continuity equa-

tion for the E�B drift flow is combined with Poisson’s

equation to obtain a dispersion relation. When the resonant

region is in the low density halo, the perturbed charge den-

sity of the resonant electrons makes a small correction to the

dispersion relation, yielding a small imaginary frequency

shift, which is the wave damping decrement. To understand

more clearly how the resonant particles act back on the

wave, we focus on the equation of motion for the surface rip-

ple on the plasma core. As we will see, the bare electric field

from the perturbed charge density of the resonant electrons

acts back on the core, causing E�B drifts that reduce the

amplitude of the surface ripple, that is, damp the wave.

Again, we find a simple mechanistic description of the man-

ner in which the resonant electrons act back on the wave.

II. LANGMUIR WAVE

First, we consider the case of a Langmuir wave that

propagates in the x-direction, writing the perturbed electric

field in the form

dEðx; tÞ ¼ dEkðtÞ expðikxÞ þ c:c:; (1)

where c.c. stands for the complex conjugate. It is convenient

to write the field as the sum
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dEkðtÞ ¼ dEnon–res
k ðtÞ þ dEres

k ðtÞ; (2)

where

dEnon–res
k tð Þ ¼ � 4pednnon–res

k tð Þ
ik

; (3)

and dEres
k tð Þ ¼ � 4pednres

k tð Þ
ik

; (4)

are the fields produced by the perturbed charge densities of the

non-resonant and resonant electrons, �ednnon–res
k ðtÞ and

�ednres
k ðtÞ, following Gauss’s law. The non-resonant electrons

are those in the bulk of the velocity distribution, and the resonant

electrons are assumed to be well out on the tail of the distribution.

For the non-resonant electrons, it is convenient to intro-

duce a displacement dxðx; tÞ defined through the relation

@dxðx; tÞ=@t ¼ dv, where dvðx; tÞ is the velocity perturbation.

The spatial Fourier transform of this relation is the equation

@dxk=@t ¼ dvkðtÞ, which allows the continuity equation to be

written in the form

0 ¼ @nnon–res
k

@t
þ ikndvk ¼

@

@t
dnnon–res

k þ ikndxk

� �
; (5)

where n is the unperturbed density of the non-resonant elec-

trons. The last form yields the solutions

dnnon–res
k ðtÞ ¼ �ikndxkðtÞ; (6)

and dEnon–res
k ðtÞ ¼ 4pendxkðtÞ: (7)

The linearized Euler equation for the non-resonant elec-

trons governed by fluid theory takes the form

nm
@dvk

@t
¼ �nedEk � ikcTdnnon–res

k ; (8)

where m is the electron mass, T is the electron temperature, and

c has the value 3 for a one-dimensional adiabatic compression.7

By using the definition @dxk=@t ¼ dvk and Eqs. (1), (6), and

(7), Eq. (8) can be rewritten as the driven oscillator equation

@2

@t2
þ x2

p þ 3k2�v2

� �
dxk tð Þ ¼ � e

m
dEres

k tð Þ; (9)

where x2
p ¼ 4pne2=m is the square of the plasma frequency,

�v2 ¼ T=m is the square of the thermal velocity, and the quan-

tity k2�v2=x2
p ¼ k2k2

D is assumed to be small. Here, kD is the

Debye length. Physically, Eq. (9) states that the non-resonant

electrons moving in the wave field may be thought as an os-

cillator that is driven by the bare electric field from the reso-

nant electrons. Of course, Eq. (9) also can be obtained from

the coupled Vlasov and Poisson equation.

To understand the effect of the driver field on the ampli-

tude of the oscillations, we look for a solution to Eq. (9) of the

form dxkðtÞ ¼ d~xkðtÞ expð�ix0tÞ, where x2
0 ¼ x2

p þ 3k2�v2 is

the original Langmuir wave frequency squared and d~xkðtÞ is a

slowly varying complex amplitude. This solution yields the

expected form for a Langmuir wave traveling in the positive

x-direction. Since the resonant particles travel at the wave

phase velocity x0=k, the driving field due to these particles

can be written as dEres
k ðtÞ ¼ d ~E

res

k ðtÞ expð�ix0tÞ, where

d ~E
res

k ðtÞ again is a slowly varying complex amplitude.

Substituting these forms into Eq. (9) and neglecting jd€~xk=d~xkj
compared to x2

0, yields the reduced equation

�2ix0

dd~xk

dt
¼ � e

m
d ~E

res

k tð Þ: (10)

Thus, when the ratio d ~E
res

k =d~x is imaginary, the driver pro-

duces damping or growth, and when the ratio is real the

driver produces a frequency shift.

As noted in the Introduction, this paper focuses on only

half of the wave-particle interaction, namely, the influence of

the resonant particles back on the wave, and Eq. (10) solves

that problem for the case of a Langmuir wave. The other half

of the problem determines the influence of the wave on the res-

onant particles, that is, determines the perturbed charge density

of the resonant particles. As a simple application of Eq. (10),

we use the well-known perturbed charge density for resonant

particles in a weakly damped, linear Langmuir wave2

d~nres
k tð Þ ¼ n

ð
res

dv
e

m

d ~Ek

i kv� x0ð Þ
@f0

@v

’ n

ð
res

dv
e

m
pd kv� x0ð Þd ~Ek

@f0

@v

¼ pne

m

d ~Ek tð Þ
k

@f0

@v

����
x0=k

; (11)

where f0ðvÞ is the unperturbed velocity distribution, and the

Plemelj formula has been used in the second step.8

Since @f0=@vjx0=k is first order in the small number of

resonant particles, d ~EkðtÞ need only be accurate to zero

order, and we can use Eq. (7) to obtain the relation

d ~EkðtÞ ’ d ~E
non–res

k ðtÞ ¼ 4pned~xkðtÞ: (12)

Eq. (4) then yields the equation

� e

m
d ~E

res

k tð Þ ¼ �pi
x4

p

k2

@f0

@v

����
x0=k

d~xk tð Þ: (13)

Eq. (10) then implies the oscillator damping rate

ck ¼
dd~xk=dt

d~xk tð Þ ¼
p

2x0

x4
p

k2

@f0

@v

����
x0=k

¼ �
ffiffiffi
p
8

r
xp

k3k3
D

exp � 1

2k2k2
D

1þ 3k2k2
D

� 	" #
; (14)

where the last form is the well-known form of the damping

rate for a Maxwellian velocity distribution.2

Of course, the use of Eq. (10) is not limited to the case

where the resonant particle density perturbation is determined

by the linearized Vlasov equation. For a large amplitude wave

where trapping of resonant particles in wave troughs is impor-

tant,9,10 Eq. (10) can still be used to determine the influence

of the resonant particles back on the wave.

III. DIOCOTRON WAVE

To illustrate the wave-particle interaction that can occur

in 2D E�B dynamics, we consider a diocotron wave that is
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excited on a pure electron plasma column in a Malmberg-

Penning trap.3,6,11 An analytic treatment is possible for the

case where the electron column consists of a uniform density

central core surrounded by a relatively low-density halo.

Such a density profile often is said to be of the “top hat”

form. We assume that the unperturbed density has the con-

stant value nðrÞ ¼ nc out to the radius r¼Rc, and there drops

abruptly to the much lower density nðRþc Þ ¼ nh, where the

subscripts c and h refer to the core and halo, respectively.

Consistent with the standard trap configuration, we assume

that the electron column is immersed in a uniform, axial

magnetic field B ¼ Bẑ, where ðr; h; zÞ is a cylindrical coordi-

nate system with the z-axis coincident with the axis of the

trap.

Since the 2D E�B drift flow is incompressible and

since the unperturbed density profile for the core is uniform

with an abrupt fall off at the surface, the diocotron wave can

be characterized by specifying the ripple on the surface of

the core. For a diocotron wave of azimuthal wave number m,

the h- and t-dependent radial position of the core surface can

be written as

rsðh; tÞ ¼ Rc þ DðtÞ exp½iðmh� xmtÞ� þ c:c:; (15)

where xm is the still-to-be-determined wave frequency and

D(t) is a complex wave amplitude. The slow time depend-

ence in the complex amplitude is due to the interaction with

the resonant particles.

The total time derivative of rsðh; tÞ is given by the

equation

drs h; tð Þ
dt

¼ @

@t
þ xE Rcð Þ

@

@h


 �
rs h; tð Þ

¼ f _D tð Þ þ i mxE Rcð Þ � xm½ �D tð Þg
� exp i mh� xmtð Þ½ � þ c:c:; (16)

where xEðrÞ is the E�B drift rotation frequency at radius r.

Since the motion of the surface is due to E�B drifts

caused by the mode potential, we also can write the time de-

rivative as the drift velocity

drs h; tð Þ
dt

¼ � c

BRc

@d/ Rc; h; tð Þ
@h

; (17)

where d/ ¼ d/ðr; h; tÞ is the mode potential.

The m-th Fourier components of the potential and the den-

sity perturbation are related by the Green’s function integral6

d/mðr; tÞ ¼ 4pe

ðRw

0

2pr0dr0Gmðr; r0Þdnmðr0; tÞ; (18)

where

Gm r; r0ð Þ ¼ 1

4pm

rm

r0m
r02m

R2m
w

� 1

 !
for r < r0

r0m

rm

r2m

R2m
w

� 1

 !
for r0 < r;

8>>>>><
>>>>>:

(19)

is the Green’s function and – e is the electron charge. Here,

Rw is the radius of a conducting wall that bounds the confine-

ment region, and the Green’s function vanishes at r¼Rw in

accord with the boundary condition on the wave potential.

It is convenient to write the perturbed density as the

sum of a term from the non-resonant region and a term

from the resonant region, dnnon–res
m ðr; tÞ and dnres

m ðr; tÞ, and

to write the potential as the sum of the corresponding terms

d/mðr; tÞ ¼ d/non–res
m ðr; tÞ þ d/res

m ðr; tÞ. Because the unper-

turbed core density is uniform out to the core surface and

because the halo density is relatively low, the dominant

contribution to dnnon–resðr; h; tÞ comes from the surface of

the core and is given by the expression

dnnon–res r; h; tð Þ ¼ �D tð Þexp i mh� xmtð Þ½ � @n

@r
þ c:c:

¼ D tð Þexp i mh� xmtð Þ½ �
� nc � nhð Þd r � Rcð Þ þ c:c:; (20)

where dðr � RcÞ is a delta function.

The Green’s function integral then implies the non-

resonant potential

d/non–res Rc; h; tð Þ ¼ 8p2eRc nc � nhð ÞGm Rc;Rcð Þ
� D tð Þexp i mh� xmtð Þ½ � þ c:c:

¼ � 2pe

m
Rc nc � nhð Þ 1� R2m

c

R2m
w

 !

� D tð Þexp i mh� xmtð Þ½ � þ c:c: (21)

Combining Eqs. (16) and (17) and substituting Eq. (21)

for the non-resonant potential yield the relation

� c

BRc

@d/res Rc; h; tð Þ
@h

þ
2ipec nc � nhð Þ

B
1� R2m

c

R2m
w

 !

� D tð Þexp i mh� xmtð Þ½ � þ c:c:

¼ f _D tð Þ þ i mxE Rcð Þ � xm½ �D tð Þg exp i mh� xmtð Þ½ � þ c:c:

(22)

It is instructive to examine Eq. (22) in the limit where

there is no resonance, and d/res and _DðtÞ are zero. The equa-

tion then implies the dispersion relation for a diocotron wave

on a “top-hat” density profile

xm � mxE Rcð Þ ¼ �xE Rcð Þ 1� nh

nc

� �
1� R2m

c

R2m
w

 !
; (23)

using that fact that xEðRcÞ ¼ 2pecnc=B at the surface of the

core. This dispersion relation is well-known in the limit

nh¼ 0.3,4 By using this dispersion relation, Eq. (22) reduces

to the form

� c

BRc

@d/res

@h
¼ _D tð Þexp i mh� xmtð Þ½ � þ c:c: (24)

Thus, we obtain the rate of change of the complex wave

amplitude
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_D tð Þ ¼ �
ð2p

0

dh
2p

c

BRc

@d/res Rc; h; tð Þ
@h

exp �i mh� xmtð Þ½ �

¼ � imc

BRc
d/res

m Rc; tð Þexp ixmt½ �: (25)

Physically, the electric field from the resonant particles acts

back on the core causing E�B drift motion, and this motion

produces a slow rate of change of the complex wave

amplitude.

Since the resonant particles travel at the wave phase

speed, the perturbed density dnres
m ðRc; tÞ can be written in the

form d~nres
m ðRc; tÞ exp½�ixmt�, where d~nres

m ðRc; tÞ is slowly

varying. Likewise, the perturbed potential d/res
m ðRc; tÞ can be

written in the form d~/
res

m ðRc; tÞe�ixmt, where d~/
res

m ðRc; tÞ is

slowly varying. Eqs. (18) and (19) then imply the relationship

d~/
res

m Rc; tð Þ ¼ e

m

ð
res

2pr0dr0
Rm

c

r0m
r02m

R2m
w

� 1

 !
d~nres

m r0; tð Þ; (26)

and Eq. (25) reduces to the result

_D tð Þ ¼ � icm

BRc
d~/

res

m Rc; tð Þ: (27)

To obtain Eq. (25), we projected out the m-th Fourier

component of Eq. (24), but one may worry about other

Fourier components in the potential d/resðr; h; tÞ. When the

perturbed resonant particle density, dnresðr; h; tÞ, is obtained

by linear theory, as is the case in linear Landau damping, there

is only the m-th Fourier component, so there is no issue.

However, when the resonant particle dynamics is nonlinear,

say, when particle trapping is involved, higher harmonics typ-

ically are present in dnresðr; h; tÞ and correspondingly in

d/resðr; h; tÞ. Why are these harmonic terms not balanced by

such terms on the right hand side of Eq. (24)? The reason is

that we neglected small harmonic terms in the surface ripple

of Eq. (15). These higher harmonic ripples are indeed small

because the higher harmonics in d/resðr; h; tÞ do not drive the

core surface resonantly. One can easily show that the har-

monic ripple amplitudes are smaller than D(t) by the factor

nh=nc � 1.

As a simple application of Eq. (27), we evaluate

d~/
res

m ðRc; tÞ for the case of a diocotron mode that experiences

a linear Landau resonance in the low-density halo.6,12 We

work only to first order in the small quantity nh=nc � 1. The

resonant radius then need only be calculated to zero order in

nh=nc. To this order, the E�B-drift rotation frequency in the

halo region (r > Rc) is xEðrÞ ¼ xEðRcÞR2
c=r2. Substituting

this expression and dispersion relation (23) into the reso-

nance condition xm ¼ mxEðrresÞ and dropping first order

terms in nh=nc yield the expression for the resonant radius

R2
c

r2
res

¼ 1� 1

m
1� R2m

c

R2m
w

 !
: (28)

Note that rres > Rc for all m.

From the linearized continuity equation and the Plemelj

formula,8 one finds the expression for the perturbed density

at the resonance

d~nres
m r; tð Þ ¼

mc

Br

@n

@r
d~/

non–res

m r; tð Þipd xm � mxE rð Þ½ �; (29)

where d~/
non–res

m ðr; tÞ is the potential due to the perturbed

charge density on the surface of the core. Here we ignore

d~/
res

m ðr; tÞ set up by the fewer resonant particles, similar to

the case in Section II. For r > Rc, this latter potential can be

written as

d~/
non–res

m r; tð Þ ¼ d~/
non–res

m Rc; tð Þ Gm r;Rcð Þ
Gm Rc;Rcð Þ ; (30)

where d~/
non–res

m ðRc; tÞ is easily extracted from Eq. (21).

Substituting Eqs. (29) and (30) into Eq. (26) and evaluating

the Green’s function with Eq. (19) yield the result

d~/
res

m Rc;tð Þ¼ 2peð Þ2

m

cRc

B

R2m
c

r2m
res

1� r2m
res

R2m
w

 !2
n0 rresð Þ

mjx0E rresð Þj
ipD tð Þnc:

(31)

Substituting into Eq. (27) then yields the well-known damp-

ing rate6,12

_D tð Þ
D tð Þ ¼ xE Rcð Þ

n0 rresð ÞRc

nc

p
2m

Rc

rres

� �2m�3

1� r2m
res

R2m
w

 !2

: (32)

The case of an m¼ 1 diocotron wave provides a particu-

larly clear illustration of this mechanical approach to the

wave-particle interaction.13 First, note that the m¼ 1 wave is

special in that an analytic description of the wave is not lim-

ited to the case of a “top-hat” density profile, but also is pos-

sible for any monotonically decreasing density profile, n(r),

that vanishes at the conducting wall. For many years, it was

thought that there can be no resonant wave-particle reso-

nance for the m¼ 1 wave since the resonant radius is at the

wall, and the unperturbed density is zero at the wall.

However, recent experiments have observed a novel alge-

braic damping of the m¼ 1 wave when transport sweeps a

low density halo of particles out from a central core to the

wall.14 The damping begins when the halo reaches the wall

and is thought to be due to a nonlinear wave particle interac-

tion in the region of the wall.

In the absence of a wave-particle interaction, the self-

consistent density perturbation and wave potential for the

m¼ 1 wave are given by the expressions

dnnon–res r; h; tð Þ ¼ � @n

@r
D exp i h� x1tð Þ½ � þ c:c:½ �

¼ � @n

@r
A cos h� x1t� að Þ; (33)

and

d/non–res r; h; tð Þ ¼ � rB

c
�x1 þ xE rð Þ½ �A cos h� x1t� að Þ:

(34)

Here, we have set D ¼ ðA=2Þ expð�iaÞ, where A and a are

real. By using the Green’s function integral in Eq. (18), one

can easily show that the density perturbation and potential

are self-consistent, that is, substituting the density
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perturbation into the Green’s function integral yields poten-

tial. The wave frequency is given by x1 ¼ xEðRwÞ, so the

wave potential vanishes at the conducting wall.

Physically, such a density perturbation results when the

plasma column is displaced off the trap axis by the amount A
in the instantaneous direction h ¼ x1tþ a. The displaced col-

umn produces an image in the conducting wall, and for small

displacement (i.e., A� Rw) the image is well outside the

wall, producing an image electric field that is nearly uniform

in the region of the column. The uniform field produces a uni-

form E�B drift velocity of the column transverse to the in-

stantaneous displacement off axis, and in turn this produces a

rotation of the column around the trap axis at the mode fre-

quency x1. In the wave potential, the term proportional to x1

is the potential due to the uniform image electric field, and the

term proportional to xEðrÞ is the correction to the radial space

charge potential due the shift of the column off axis.

We postulate that the non-resonant density perturbation

still can be described as a displacement of the column off the

trap axis even when the potential due to the resonant electrons

acts back on the column. The reason for this simplification is

easy to understand. The resonant particles are near the wall, so

the field from these particles in the non-resonant region is a

vacuum field, and the dipole component of such a field is uni-

form, as will be explained shortly. Thus, the field due to the

resonant particles simply produces an increment to the uniform

E�B drift motion produced by the non-resonant potential,

and we will see that the increment can be accommodated sim-

ply by allowing a slow time dependence in A(t) and aðtÞ.
Formally, the condition that the postulate be satisfied is

that continuity equation in the non-resonant region

@

@t
þ ixE rð Þ


 �
dnnon–res

1 r; tð Þ

¼ ic

Br
d/non–res

1 r; tð Þ þ d/res
1 r; tð Þ

� � @n

@r
; (35)

be satisfied when the Fourier components d/non–res
1 ðr; tÞ and

dnnon–res
1 ðr; tÞ are evaluated using the functional forms for the

potential and density perturbation in Eqs. (33) and (34), allow-

ing only that D, or equivalently A and a, are time-dependent.

Substituting the Fourier components yields the equation

_A tð Þ � iA tð Þ _a tð Þ ¼ 2 _D tð Þeia tð Þ ¼ �2ic

Br
d/res

1 r; tð Þeix1tþia tð Þ:

(36)

Since the left hand side of the equation is independent of r, it

is necessary that the right hand side be independent of r, or

equivalently that d/res
1 ðr; tÞ be proportional to r, and the

Green’s function solution

d/res
1 r; tð Þ ¼ �er

ð
res

2pr0dr0 1� r02m

R2m
w

 !
dnres

1 r; tð Þ; (37)

does imply the required proportionality. In choosing the cor-

rect form of the Green’s function from Eq. (18), we used the

fact that r < r0 in the non-resonant region. Proper choice of

the time-dependence in A(t) and aðtÞ then allows both the

real and imaginary parts of the equation to be satisfied.

Since d/resðr; h; tÞ is a vacuum potential in the non-

resonant region, the dipole portion of the potential can be

written in the form

d/resðr; h; tÞ ¼ �dEres
x ðtÞr cosðh� x1t� aÞ

� dEres
y ðtÞr sinðh� x1t� aÞ; (38)

where a rotating (x, y) coordinate system has been intro-

duced, with the x-axis directed along the instantaneous dis-

placement of the plasma column. The Fourier component of

this expression is simply

d/res
1 r; tð Þ ¼

�dEres
x tð Þr
2

þ i
dEres

y tð Þr
2


 �
exp �i x1tþ að Þ½ �;

(39)

so the real and imaginary parts of Eq. (36) take the form

_A tð Þ ¼
cdEres

y tð Þ
B

; (40)

_a tð ÞA tð Þ ¼ Dx1A tð Þ ¼ � cdEres
x tð Þ
B

: (41)

Here, we have identified _a � Dx1 as a frequency shift.

Physically, the uniform field that is transverse to the instanta-

neous displacement of the column (i.e., dEres
y ) produces an

E�B drift motion of the plasma column parallel to the dis-

placement, that is a damping or growth of the wave amplitude,

and the component that is parallel to the displacement (i.e.,

dEres
x ) produces an increment to the rotation velocity of the

column around the trap-axis, that is, a wave frequency shift.
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