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Recent experiments with pure electron plasmas in a Malmberg–Penning trap have observed the

algebraic damping of m¼ 1 diocotron modes. Transport due to small field asymmetries produces a

low density halo of electrons moving radially outward from the plasma core, and the mode

damping begins when the halo reaches the resonant radius r¼Rw at the wall of the trap. The

damping rate is proportional to the flux of halo particles through the resonant layer. The damping is

related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance

produces exponential damping. This paper explains with analytic theory the new algebraic damping

due to particle transport by both mobility and diffusion. As electrons are swept around the “cat’s

eye” orbits of the resonant wave-particle interaction, they form a dipole (m¼ 1) density distribu-

tion. From this distribution, the electric field component perpendicular to the core displacement

produces E�B-drift of the core back to the axis, that is, damps the m¼ 1 mode. The parallel com-

ponent produces drift in the azimuthal direction, that is, causes a shift in the mode frequency.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4958317]

I. INTRODUCTION

Diocotron modes are dominant features in the low fre-

quency dynamics of nonneutral plasmas confined in

Malmberg–Penning traps.1–4 In an ideal limit, these modes in-

volve only cross magnetic field E�B drift motion and are de-

scribed by the drift-Poisson equations.1 These equations are

isomorphic to Euler’s equations for the ideal (i.e., incompress-

ible and inviscid) flow of a neutral fluid, and the diocotron

modes are analogues of a Kelvin modes on a fluid vortex.5,6

There has been much previous work on diocotron mode

instabilities2,7–9 and on diocotron mode damping.5,6,10–13

This paper focus on damping.

Previously identified damping mechanisms include a

spatial version of the Landau resonance,5,10 the rotational

pumping of bulk viscosity,11,12 axial velocity dissipation on

a separatrix for plasma columns with trapped and passing

particles,14 and a strong damping mechanism when the radial

magnetron field from end cylinders dominates over the radial

space charge field.13 The Landau mechanism fits into the ide-

al 2D E�B drift framework, but others, such as rotational

pumping, involve physics beyond the ideal model.

This paper discusses a damping mechanism that is a

close cousin of Landau damping, so we begin with a review

of the spatial Landau resonance.

The nonneutral plasma column is immersed in a uniform

axial magnetic field Bẑ, has a radial space charge electric

field EðrÞr̂ , and consequently undergoes an azimuthal E�B

drift rotation. Here, ðr; h; zÞ is a cylindrical coordinate sys-

tem with the z-axis coincident with the axis of the trap. We

consider the plasma column to be a pure electron plasma in

this paper.

A diocotron mode of azimuthal mode number m can expe-

rience a resonant interaction with the rotating plasma flow at a

critical plasma radius RresðmÞ, where xm ¼ mxE½RresðmÞ�.
Here, m is the azimuthal mode number, xm is the mode

frequency, and xEðrÞ ¼ �cEðrÞ=Br is the local rotation fre-

quency of the plasma.

Linear mode theory5,10 predicts that this spatial Landau

resonance produces exponential mode damping when the

slope of the radial density distribution is negative at the criti-

cal radius, and this damping has been observed experimen-

tally for low order azimuthal modes with m> 1.10

The m¼ 1 mode is special in that the resonant radius is

at the wall where typically there are no particles. It was long

thought that an m¼ 1 mode would not experience damping

due to a Landau resonance.5

However, recent experiments15 have observed a novel

algebraic damping of the m¼ 1 mode, which we believe is a

close cousin of Landau damping. In these experiments, trans-

port produces a low density halo of particles that gradually

extends out from the plasma core until it reaches the wall.

The algebraic damping begins when the halo reaches the res-

onant region (the wall for m¼ 1), and the damping rate is

proportional to the flux of particles through the resonance.

The theoretical picture that we envision for this flux-

driven algebraic damping is similar to, but distinct from, spa-

tial Landau damping. In both cases, the damping results

from an interaction of the mode field with resonant particles,

but the particulars of the interactions are very different in the

two cases. In spatial Landau damping, the resonant particles

are present before the mode is excited, and the damping

results from a mode-driven rearrangement of particles near

the resonant radius. The analysis is linear and leads to expo-

nential damping.

In contrast, for the new flux-driven algebraic damping,

there are no particles initially at the resonant radius. The trans-

port gradually brings particles to the resonant radius, and the

mode field then sweeps the particles around the nonlinear

cat’s eye orbits to a scrape-off layer, causing the damping.

As will be discussed later, the scrape-off layer is a thin

region adjacent to the wall where guiding center drift theory
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breaks down and particles (electrons) are rapidly absorbed

by the wall. The scrape-off layer is at least as thick as a cy-

clotron radius. We will assume that the thickness of the layer

is much smaller than the mode amplitude.

While the new theory can be described within a 2D flow

framework, the transport and the truncation of particle orbits

by the wall are non-ideal elements beyond the E�B drift

description.

The paper that reported the experimental results on the

new damping also included a short theoretical explana-

tion.15,16 To help understand this theory consider Fig. 1,

which shows the cross section of an electron plasma column

that has been displaced off the trap axis through the excitation

of an m¼ 1 diocotron mode. The displacement is of magni-

tude D and direction �h ¼ 0. The gray lines are equipotential

contours as seen in the mode frame. In this frame the E�B

drift flow is along the equipotential contours. The orange

shaded region represents the relatively high density plasma

core. In this region, the mode potential can be described by

linear theory, and the equipotential curves are simply dis-

placed circles. The resonant region is near the wall, and there

nonlinear effects distort the circles. Near the left side of the

figure are the “cat’s eye” orbits, which describe the motion of

particles that are trapped in the wave trough. In order to make

the “cat’s eye” orbits easier to see in Fig. 1, the ratio of the

displacement to the wall radius (i.e., D=Rw) was taken to be

the largest of experiment values at 0.1.

In addition to the E�B drift flow, there is a slow trans-

port flow. The transport produces a low density halo that

gradually extends out from the plasma core. A given particle

slowly spirals out, moving successively from one contour to

another of larger radius.

The green dotted-dashed equipotential contour in Fig. 1 is

the critical contour that just misses the blue dashed scrape-off

layer at �h ¼ 0. When transport moves an electron through this

critical contour, the electron hits the scrape-off layer and is

absorbed by the wall before returning to �h ¼ 0. The red solid

curve in Fig. 1 shows the trajectory of such an electron.

The previous theory focuses on the transfer of canonical

angular momenta from the plasma core to such electrons. In

the guiding center drift approximation, the canonical angular

momentum for an electron in the uniform magnetic field of

the trap is simply Ph ¼ eBr2=2c, where the radial position r
is measured from the center of the trap, B is the magnetic

field strength, and e ¼ �jej is the electron charge.17,18 When

an m¼ 1 diocotron mode is excited, the plasma core is dis-

placed off the trap axis by a small amount D, and the core ca-

nonical angular momentum per unit length is changed by

NðeB=2cÞD2, where N is the number of core particles per

unit length.10 This change in angular momentum is called

the canonical angular momentum of the mode.

When an individual electron E�B drifts in a nearly circu-

lar orbit around the displaced center of the plasma core, the ra-

dius of the electron measured from the center of the trap

oscillates by order Dr � D cos½�hðtÞ�. Thus, the electron contin-

ually trades angular momentum back and forth with the core,

or equivalently with mode. However, the orbit for an electron

that crosses the critical contour is truncated by the wall, so

there is a net change in angular momentum. Since the thick-

ness of the “cat’s eye” orbit is of order D, the net change in an-

gular momentum is of order DPh � ðeB=2cÞ½R2
w � ðRw � DÞ2�

� ðeB=cÞRwD. More precisely, the previous derivation15

obtained the average change in canonical angular momentum

hDPhi ¼ ð2=pÞðeB=cÞRwD.

Balancing the rate of change of the mode angular mo-

mentum against the rate of change of halo particle angular

momentum yields the equation

d

dt
N

eB

2c
D2 þ

���� dN

dt

����hDPhi ¼ 0; (1)

where jdN=dtj is the rate per unit length at which halo par-

ticles pass through the resonance to the wall. Substituting for

hDPhi yields the damping rate equation

dD

dt
¼ � 2

p
1

N

���� dN

dt

����Rw ¼ �c; (2)

with a solution of linear algebraic damping DðtÞ
¼ Dð0Þ � ct.

This simple result captures the experimental observa-

tions that the mode amplitude decays as a linear function of

time and that the magnitude of the damping rate is propor-

tional to the flux of halo particles through the resonant layer.

The predicted magnitude of the damping rate is about half

the measured rate.

Although this simple derivation has the advantage of

brevity, it leaves questions unanswered. For example, given

that the resonant particles cause mode damping, do they also

cause a mode frequency shift? Also, why focus exclusively

on the thin ribbon of electrons beyond the critical contour,

when there are many more resonant electrons? Is it really

true that the mode transfers zero net angular angular momen-

tum to these other resonant electrons?

FIG. 1. Cross section of the electron plasma column in a m¼ 1 mode. The

orange shaded region is the plasma core. The gray lines are equipotential

contours in the mode frame. The blue dashed curve is the scrape-off layer.

The green dotted-dashed curve is the critical contour. The red solid curve is

a particle trajectory.
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A conceptual issue is the use of angular momentum bal-

ance. In fact, the total angular momentum for the plasma

core and halo is not conserved. Transport continually

changes the angular momentum of the halo particles as these

electrons move out radially.

Also, the simple theory is implicitly based on a zero-

diffusion model; the transport is assumed to be due exclu-

sively to mobility. Unfortunately, the zero-diffusion model

leads to an infinite density gradient at the leading edge of the

halo, and such a gradient cannot be maintained in the pres-

ence of even a small diffusion coefficient. For the experi-

mental conditions, diffusion affects the orbits of all the

particles deemed responsible for damping in the simple theo-

ry. Indeed the whole idea of well-defined orbits looses mean-

ing in the face of such diffusion. The orbits are diffusively

broadened.

What is needed is a new, more rigorous theory based on

a solution of the coupled Poisson and transport equations.

Such a theory talks about an evolving density, rather the par-

ticle orbits, and makes no assumption about conservation of

angular momentum.

We note at the outset, however, despite the problems

listed above, the damping rate given in Eq. (2) will survive

in the new theory, provided that the diffusion coefficient is

sufficiently small, as defined by inequalities given later. The

simple theory needs a more rigorous backup, indeed is wrong

in detail, but captures the essence of the physics. The new

theory does predict a frequency shift

Dx ¼ 32

3

ecD

BRw
n 0ð Þ R1ð Þ; (3)

where nð0ÞðR1Þ is the unperturbed density in the resonant re-

gion of the halo.

The new theory preserves an important simplification of

the traditional linear theory for an m¼ 1 diocotron mode.8

For any unperturbed density perturbation nð0ÞðrÞ that is

monotonically decreasing in r and goes to zero for some

r > Rw, the mode perturbation results from a uniform dis-

placement D of the plasma column off the trap axis. The dis-

placed column produces an image in the conducting wall,

and in the linear limit (i.e., D=Rw � 1), the electric field

from the image is uniform over the whole column, producing

a uniform E�B drift of the whole column transverse to the

displacement D. This uniform motion of the column around

the trap axis is the mode.

In the traditional theory, there are no resonant particles

near the wall, but the theory presented here must include

such particles. Moreover, the perturbed charge density of the

resonant particles produces an electric field that acts back on

the plasma core, and one might worry that this field would

spoil the picture of uniform core displacement. However,

that is not the case.

The resonant particles are well outside the plasma core,

so the field from the resonant particles is a vacuum field in

the region of the core. The dipole portion of this field is the

portion that drives the mode resonantly, and a dipole vacuum

field is uniform. Recall that a dipole vacuum potential can be

written in the form

d/ðr; h; tÞ ¼ �dExðtÞr cos �h � dEyðtÞr sin �h; (4)

where dExðtÞ is the uniform field along the direction �h ¼ 0

and dEyðtÞ is the uniform field along �h ¼ p=2. We assume

that the halo density is small, so the uniform field dExðtÞx̂ þ
dEyŷ is a small increment to the uniform field from the im-

age in the wall and produces only a small increment in the

uniform drift velocity of the core. Thus, the core perturbation

is still a uniform displacement.

In Section II, the damping rate _D and the frequency

shift Dx are obtained as Green’s function integrals over the

perturbed charge density in the resonant region. To obtain

these integral expressions, the perturbed charge density of

the core is taken to be of the form arising from a uniform

displacement.

The integral expressions can be rewritten in the form

_D ¼ c

B
dEy tð Þ; DDx ¼ � c

B
dEx tð Þ; (5)

which yields a simple physical interpretation. The compo-

nent of the uniform field from the resonant particles that is

transverse to the displacement (dEy) cause an E�B drift

motion of the core back toward the trap axis, that is, a damp-

ing of the mode. Likewise, the component of the field along

the displacement (dEx) causes an increment to the E�B

drift velocity around the trap axis, that is, a mode frequency

shift.

A second re-writing of the integral expression for _D
clarifies the issue of angular momentum conservation. The

equation can be re-written as a statement that the torque

exerted by the core on the resonant particles is equal and op-

posite to the torque exerted by the resonant particles back on

the core. Two opposing torques are equal and opposite even

if a third torque (say, due to the transport) acts. The treat-

ment based on Poisson’s equation correctly, and automatical-

ly, focuses on torque balance, rather than angular momentum

balance.

For the conditions of the experiment, we will see that

the transport caused change in angular momentum of elec-

trons being swept to the wall is small compared with the

change caused by the mode field, so the angular momentum

balance is approximately correct. Nevertheless, the calcula-

tion of the damping rate should at least start from a rigorous

foundation based on torque balance.

To obtain explicit expressions for the damping rate and

frequency shift, the transport equation must be solved for

the halo density distribution in the resonant region and the

result substituted into the Green’s function integrals. As a

first step, the transport equation is discussed and simplified

in Section III.

Note that the halo evolution takes place in two stages.

First the halo extends radially outward until it reaches to the

wall. At the wall, the electrons are continuously absorbed,

and a quasi-steady state density distribution is established.

We calculate the damping rate and frequency shift for this

density distribution.

Section IV obtains simple analytic expressions for the

density distribution, damping rate and frequency shift by
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using an idealized transport model: zero diffusion coefficient

and constant coefficient of mobility. The E�B drift flow

and mobility flow are then both incompressible and can be

incorporated in a Hamiltonian description of the electron

orbits. This idealized model implicitly underlies the simple

theory,15,16 but leads to an infinite density gradient at the

leading edge of the halo, which is untenable.

Section V includes the effect of diffusive broadening at

the leading edge gradient. For the conditions of the experi-

ments, the broadening substantially modifies the density dis-

tribution and the orbits in the region that determines the

damping rate, so one might expect that the answer for the

damping rate would be substantially changed. However, the

Green’s function integral for the damping rate can be rewrit-

ten in an approximate form that involves only the flux enter-

ing the broadening layer, and this form again yields the zero-

diffusion damping rate in Eq. (2). The approximation

requires that the diffusion coefficient be sufficiently small, as

will be specified by inequalities in Section V. Subject to

these inequalities the frequency shift is also relatively

unchanged.

Numerical solutions for the diffusively broadened densi-

ty distribution are obtained in the Appendix and are used in

the Green’s function integral to obtain numerical results for

the damping rate. The numerical results are in good agree-

ment with the approximate analytic result of Section V.

Section VI obtains a perturbative correction to the

damping rate to account for the slow time dependence in

D(t). This time dependence causes the contours themselves

to move, and the corrected damping rate is proportional to

the flux through the moving contour. For the conditions of

the experiment the correction is small.

Finally, Section VII is a discussion on the general appli-

cability of this flux-driven damping mechanism.

II. GREEN’S FUNCTION SOLUTION FOR THE MODE
DAMPING RATE AND FREQUENCY SHIFT

In this section, we obtain expressions for the mode

damping rate and frequency shift as Green’s function inte-

grals over the perturbed charge density in the resonant region

of the halo. To complete the calculation and obtain explicit

expressions for the damping rate and frequency shift, one

must solve for the perturbed charge density in the resonant

region and substitute into the Green’s function integrals.

This second part of the calculation is deferred to Sections

III–V.

The linear m¼ 1 diocotron mode has the happy proper-

ty1,8,19 that the self-consistent density perturbation, mode po-

tential, and mode frequency are known analytically for any

unperturbed density profile nð0ÞðrÞ that is monotonically de-

creasing in r and goes to zero for some r < Rw. The self-

consistent density perturbation and mode potential are given

by the expressions

dn r; h; tð Þ ¼ � @n 0ð Þ

@r
D cos h� x1t� að Þ; (6)

d/ r; h; tð Þ ¼ � rB

c
�x1 þ xE rð Þ½ �D cos h� x1t� a½ �; (7)

where x1 � xEðRwÞ is the mode frequency. As mentioned

above, the mode can be understood as a uniform displace-

ment of the plasma column off the trap axis. From Eq. (6),

one can see that the displacement is of magnitude D and in

the instantaneous direction h ¼ x1tþ a, where a is a phase

shift. In Fig. 1, the angle in the wave frame is simply
�h ¼ h� x1t� a.

The term ðrB=cÞx1D cosðh� x1t� aÞ in the potential

represents a uniform electric field due to the image of the

displaced plasma in the conducting wall. Recall that the im-

age is located far outside the wall in the linear theory limit

where D� Rw. The uniform field produces a uniform E�B

drift of the plasma as a whole. The direction of the image

field is always along the direction of the instantaneous dis-

placement, so the uniform drift velocity moves the plasma

around the trap axis. The other term in the mode potential,

ð�rB=cÞxEðrÞD cosðh� x1t� aÞ, simply accounts for a

shift in the origin of the radial space charge field of the plas-

ma column itself.

In this theory, there are no particles in the resonant re-

gion near the wall. However, here such particles must be in-

cluded. As we will see, the mode potential acting on the

resonant particles produces a perturbed resonant particle

charge density, and this charge density produces a correc-

tion to the mode potential. This correction acts back on the

particles in the non-resonant region causing a correction to

the E�B drift motion. Nevertheless, we will postulate that

the perturbed charge density in the non-resonant region

continues to be of the form given by Eq. (6). Physically, the

perturbation in the non-resonant region is still a uniform

displacement.

Why is this the case? The resonant particles near the

wall are all outside the non-resonant region, so the correction

potential is a vacuum potential in the non-resonant region.

Moreover, the dipole component of such potential represents

a uniform electric field. Thus, the E�B drift velocity from

this field is uniform over the whole non-resonant region and

provides a small correction to the uniform drift velocity pro-

duced by the linear mode potential in Eq. (7). As we will

see, the correction can be accounted for simply by allowing

D and a in Eq. (6) to be time-dependent.

What is omitted in this description? First, the nonlinear

orbits in the resonant region create density perturbations

with azimuthal mode number greater than 1, and these har-

monic perturbations produce fields in the non-resonant re-

gion that are not uniform. However, these harmonic fields do

not drive the m¼ 1 diocotron mode resonantly, and the den-

sity perturbations produced are negligibly small.

Also neglected is an even smaller correction to the per-

turbed density in the non-resonant region that is caused by

the transport. This correction is linear in mode amplitude

and can lead to the kind of exponential damping or growth

discussed earlier by Davidson and Chao.8 We neglect this ef-

fect and focus on the interaction of the mode with resonant

particles. This choice is motivated by the experimental ob-

servation that the damping begins only when the halo par-

ticles reach the resonant region. The present theory is

complementary to the earlier theory of Davidson and Chao.8
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The m¼ 1 Fourier components of the potential and den-

sity are related through the Green’s function solution10

d/1ðr; tÞ ¼ �4pe

ðRw

0

2pr0dr0G1ðrjr0Þdn1ðr0; tÞ; (8)

where

G1 rjr0
� �

¼ 1

4p

r

r0
r02

R2
w

� 1

 !
r < r0

r0

r

r2

R2
w

� 1

 !
r0 < r;

8>>>>>><
>>>>>>:

(9)

is the Green’s function and

d/1 r; tð Þ ¼
ð2p

0

dh
2p

e�ihd/ r; h; tð Þ; (10)

dn1 r; tð Þ ¼
ð2p

0

dh
2p

e�ihdn r; h; tð Þ; (11)

are the Fourier components of the perturbed potential and

density. Note that the Green’s function satisfies the required

boundary condition G1ðRwjr0Þ ¼ 0. Also, note that Eq. (8) is

valid whether or not linear theory can be used to find the

density perturbation.

We postulate that the perturbed density can be written as

dn r; h; tð Þ ¼ �D cos h� x1t� að Þ @n 0ð Þ

@r
U R1 � rð Þ

þ dn0 r; h; tð Þ; (12)

where UðR1 � rÞ is a step-function and R1 is the outer limit

of the non-resonant region, that is, the region where linear

theory may be used. The quantity dn0ðr; h; tÞ is the perturbed

charge density in the resonant region (i.e., for R1 < r < Rw).

The postulated functional form for the non-resonant region

ðr < R1Þ assumes that the perturbation is still a uniform dis-

placement, even when the field from the resonant particles is

taken into account, as explained in earlier.

Substituting Eq. (12) into Eq. (8) yields the relation

d/1 r; tð Þ ¼ 4pe
D

2
e�ix1t�ia

ðR1

0

2pr0dr0G1 rjr0
� � @n 0ð Þ

@r0

� 4pe

ðRw

R1

2pr0dr0G1 rjr0
� �

dn01 r; tð Þ; (13)

where

dn01 r; tð Þ ¼
ð2p

0

dh
2p

dn0 r0; h; tð Þe�ih; (14)

is the Fourier component of dn0ðr; h; tÞ. In evaluating the

Green’s function integrals, one must be careful to use the cor-

rect form of G1ðrjr0Þ depending on whether r > r0 or r < r0.
For the non-resonant region r < R1, the Green’s func-

tion integral in the first term yields the result

4pe

ðR1

0

2pr0dr0G1 rjr0
� �@n 0ð Þ

@r0

¼ 4pe

ðr

0

2pr0dr0G1 rjr0
� �@n 0ð Þ

@r0
þ
ðR1

r

2pr0dr0G1 rjr0
� �@n 0ð Þ

@r0

" #

¼ 2er
N rð Þ

r2
� N R1ð Þ þ pn 0ð Þ R1ð Þ R2

w � R2
1

� �
R2

w

" #
; (15)

where both integrals on the right hand side have been inte-

grated by parts and NðrÞ �
Ð r

0
2pr0dr0nð0Þðr0Þ. For the reso-

nant region R1 < r < Rw, the Green’s function integral in the

first term yields the result

4pe

ðR1

0

2pr0dr0G1 rjr0
� � @n 0ð Þ

@r0

¼ �2er
1

R2
w

� 1

r2

� �
N R1ð Þ � pR2

1n 0ð Þ R1ð Þ
h i

; (16)

where again integration by parts has been used.

We will need the potential in the resonant region later;

here we focus on the potential in the non-resonant region,

where Eq. (13) reduces to the form

c

B
d/1 r; tð Þeix1tþia ¼ x1 � xE rð Þ½ �D

2
r

� 4pec

B

ðRw

R1

2pr0dr0G1 rjr0
� �

� dn01 r0; tð Þeix1tþia: (17)

Here, xEðrÞ ¼ �2ecNðrÞ=Br2 is the rotation frequency, and

x1 is given by xEðRwÞ, assuming that the density takes the

constant value nð0ÞðR1Þ in the resonant region R1 < r < Rw.

Note that the first term on the right hand side of Eq. (17) has

the same form as the coefficient of cosðh� x1t� aÞ in Eq.

(7) for the linear diocotron mode.

We will see that the density is not in fact constant in the

resonant region; particles are excluded from the closed cat’s

eye orbits, and the frequency shift Dx accounts for this fact.

The linearized continuity equation1 in the non-resonant

region takes the form

@

@t
þ ixE rð Þ

� �
dn1 r; tð Þ ¼

ic

Br
d/1 r; tð Þ

@n 0ð Þ

@r
; (18)

where a small correction to dn1ðr; tÞ due to transport has

been neglected.

Solving for d/1ðr; tÞ in Eq. (17) and substituting into

Eq. (18) yields the relation

reix1tþia 1

i

@

@t
þ xE rð Þ

� �
dn1 r; tð Þ
@n 0ð Þ=@r

¼ � xE rð Þ � x1½ �D
2

r

� 4pec

B

ðRw

0

2pr0dr0G1 rjr0
� �

dn01 r0; tð Þeix1tþia: (19)
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For a self-consistent solution, this equation must be satis-

fied when the non-resonant density perturbation postulated

as the first term in Eq. (12) is substituted for dnðr; tÞ.
Substituting and carrying out the time derivatives yield the

equation

� r

2

1

i

@D

@t
� @a
@t

Dþ xE rð Þ � x1½ �D
	 


¼ � xE rð Þ � x1½ �D
2

r

� 4pec

B

ðRw

0

2pr0dr0G1 rjr0
� �

dn01 r0; tð Þeix1tþia: (20)

The two terms in square brackets cancel, leaving the result

�i
@D

@t
� @a
@t

D ¼ 8pec

Br

ðRw

R1

2pr0dr0G1 rjr0
� �

dn01 r0; tð Þeix1tþia:

(21)

In the non-resonant region ðr < R1Þ, the upper form for

the Green’s function in Eq. (9) must be used, and this form is

proportional to r. Thus, the r-dependence on the right hand

side of Eq. (21) cancels. When D@a=@t and i@D=@t are cho-

sen to match the real and imaginary time-dependence of the

right hand side, we have a self-consistent solution.

Using Eq. (14) and taking the real and imaginary parts

of Eq. (21) yields the desired integral expressions for the

damping rate and frequency shift

@D

@t
¼ 8pec

Br

ðRw

R1

r0dr0
ð2p

0

dhG1 rjr0
� �

dn0 r0;h; tð Þsin h�xt� a½ �;

(22)

D
@a
@t
¼ DDx ¼ � 8pec

Br

ðRw

R1

r0dr0
ð2p

0

dhG1 rjr0
� �

� dn0 r0; h; tð Þcos h� xt� a½ �; (23)

where Dx � @a=@t is the frequency shift.

The argument of the sine and cosine functions in Eqs.

(22) and (23) [i.e., �h ¼ h� x1t� a] is the angle measured

in the instantaneous rotating frame of the wave, and the
�h-integrals in these equations are simply the dipole Fourier

components of dn0ðr; h; tÞ evaluated in the rotating frame.

In Sections III–V, we will evaluate dn0 in this rotating

frame.

A simple interpretation of Eqs. (22) and (23) provides a

more mechanistic explanation of the damping and frequency

shift. The interpretation starts from the observation that the

left hand side of the equations [i.e., @D=@t and DxD] both

have the dimensions of velocity. As mentioned above, the

charge density edn0ðr; h; tÞ is zero for r < R1, so the corre-

sponding dipole potential produced in the region r < R1 is of

the vacuum form

d/0ðr; �h; tÞ ¼ �rdEx cos �h � rdEy sin �h; (24)

where dEx and dEy are independent of �h and r. The right

hand sides of Eqs. (22) and (23) are simply expressions for

ðc=BÞdEy and �ðc=BÞdEx respectively. Thus, Eq. (22) is

simply a statement that the field dEy, from the resonant parti-

cle charge density, produces an E�B drift motion of the

plasma along the direction of instantaneous displacement D,

that is, a growth or damping of the displacement depending

on the sign of dEy. Likewise, Eq. (23) is a statement that dEx

causes an E�B drift increment to the velocity of the plasma

transverse to D, and such an increment causes a frequency

shift in the rate of rotation of the plasma around the trap

axis, that is, an increment in the mode frequency.

Finally, how does the Green’s function solution clarify

the issues associated with the angular momentum balance ar-

gument?15,16 Let ednaðr; �hÞ and ednbðr; �hÞ be two perturbed

charge densities in a Penning trap. The torque exerted on

ednaðr; �hÞ by the field from ednbðr; �hÞ is given by the

integral

sa;b ¼ �e2

ðRw

0

r0dr0
ð2p

0

d�h
0
ðRw

0

rdr

ð2p

0

� d�h
1

r

@

@�h
G r; �h; r0; �h

0� �� �
� rdna r; �h

� �
dnb r0; �h

0� �	 

:

(25)

Because the trap has cylindrical symmetry, the Green’s func-

tion has the functional form Gðr; �h; r0; �h0Þ ¼ Gðr; r0; �h � �h
0Þ.

Thus, the opposing torques are equal and opposite [i.e.,

sa;b þ sb;a ¼ 0], even if a third torque, such as that due to

transport, acts.

Eq. (22) for the damping rate is equivalent to such a

statement of torque balance. Let dnaðr; �hÞ be the perturbed

charge density of the non-resonant region [i.e., �D@nð0Þ

=@r cos �h], and let dnbðr; �hÞ be the dipole component of the

perturbed charge density of the resonant region [i.e., the di-

pole component of dn0ðr; �hÞ�. The torque sa;b is given by the

integral

sa;b ¼
ðR1

0

rdr

ð2p

0

d�h �D
@n 0ð Þ

@r
cos �h

� �
� e

r

@d/b

@�h

� �
r: (26)

Using orthogonality of the sinusoidal functions in the har-

monic expansion of d/bðr; �hÞ, the �h-integral in Eq. (26)

picks out the term �rEy sin �h in the dipole portion of

d/bðr; �hÞ, as given by Eq. (24), yielding the result

sa;b ¼ �pDeEy

ðR1

0

r2dr
@n 0ð Þ

@r

¼ �pD
@D

@t

eB

c

ðR1

0

r2dr
@n 0ð Þ

@r
: (27)

Multiplying Eq. (22) by �pDðeB=cÞr2@nð0Þ=@r and inte-

grating over dr from r¼ 0 to r¼R1 yields the equation

sa;b ¼ �8p2e2

ðRw

R1

r0dr0
ð2p

0

d�hdnb r0; �h
� �

�
ðR1

0

rdrG1 rjr0
� � @n 0ð Þ

@r
D sin �h; (28)

where dnbðr0; �hÞ has been substituted for dn0ðr0; �hÞ. The po-

tential d/aðr0; �hÞ is given by the expression
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d/a r0; �h
� �

¼ �4pe

ðR1

0

2prdrG1 r0; rð Þ �D
@n 0ð Þ

@r
cos �h

� �
;

(29)

where r0 > R1 	 r. Using the relation G1ðr0; rÞ ¼ G1ðr; r0Þ
for r0 > r yields the result

d/a r0; �h
� �

¼ 8p2eD

ðR1

0

rdrG1 r; r0ð Þ @n 0ð Þ

@r
cos �h; (30)

so Eq. (26) can be rewritten as the result

sa;b ¼ �
ðRw

R1

r0dr0
ð2p

0

d�hdnb r0; �h
� �

� e

r

@d/a

@�h

� �
r ¼ �sb;a:

(31)

III. TRANSPORT EQUATION

The particles move under the combined influence of an

E�B drift flow and a radial transport flow, so the density

evolves according to the equation

@n

@t
þ c

B
ẑ �r?/ � r?nþ 1

r

@

@r
rCr rð Þ ¼ 0; (32)

where /ðr; h; tÞ is the electric potential and CrðrÞ is the radial

transport flux.

We employ a Hamiltonian description of the drift dynam-

ics, where Hðh;Ph; tÞ ¼ e/½rðPhÞ; h; t� is the drift Hamiltonian

and ðh;Ph ¼ eBr2=2cÞ are a canonically conjugate coordinate

and momentum pair.18,20,21 One can easily check that the

Hamilton’s equations of motion22 are the same as the E�B

drift equations in a uniform magnetic field B ¼ Bẑ. The left

hand side of Eq. (32) then can be written in the form

@n

@t
þ c

B
ẑ �r?/ � r?n ¼ @n

@t
þ n;H½ �; (33)

where ½n;H� is a Poisson bracket.23

The transport is understood to be due to small static field

asymmetries,24 which exert an azimuthal drag force on the

rotating plasma, causing a radially outward drift motion. In

the experiments,15 the transport flux is varied (i.e., increased)

by applying additional field asymmetries.

On general grounds, the flux is expected to be of the

Fick’s law form25

Cr ¼ �l
@/0

@r
n�D @n

@r
; (34)

where the coefficient of mobility l and the diffusion coeffi-

cient D satisfy the Einstein relation, l ¼ eD=T < 0. Here,

�@/0=@r is the unperturbed radial electric field and T is the

temperature in the halo region. The Fick’s law form follows

from the requirement that the flux vanishes for a thermal

equilibrium density profile, nðrÞ ¼ n0 exp½�e/0ðrÞ=T�.
By changing variables from ðr; h; tÞ to ðh;Ph; tÞ, Eq. (32)

takes the form

@n

@t
þ n;H½ � ¼ @

@Ph
� _PhjTnþ ~D @n

@Ph

� �
; (35)

where

_PhjT ¼ �l
eB

c
r
@/0

@r
; ~D ¼ �

_PhjTPh � 2T

re@/0=@r
: (36)

Here _PhjT is the rate at which mobility changes the value of

Ph of a particle. Note that ~D is proportional to _PhjT and that
_PhjT < 0 and ~D > 0 since e@/=@r is negative. We will need

the transport equation in the resonant region where to a good

approximation er@/0=@r is approximately �2e2N and Ph is

approximately Pw � eBR2
w=2c, where N is the number of

particles per unit length. Thus, the transport coefficients take

the simple form

_PhjT ¼ l
B

c
� 2e2N; ~D ¼ _PhjTPw

T

Ne2
: (37)

For the experimental conditions, the factor T=Ne2 in the

diffusion coefficient is small (i.e., T=Ne2 � 10�2), so the

transport is dominated by mobility everywhere except at the

leading edge of the halo where a large density gradient

enhances the effect of diffusion.

As noted in Section II, it is convenient to work in the ro-

tating frame of the wave. The generating function23

Fðh; �Ph; tÞ ¼ �Ph½h� x1 � aðtÞ�; (38)

yields a canonical transformation to this frame, with the new

coordinate and momentum

�h ¼ h� x1t� aðtÞ; �Ph ¼ Ph; (39)

and the new Hamiltonian

�H ¼ H þ @F

@t
¼ H � x1 þ Dxð ÞPh; (40)

where Dx ¼ _a. Since �Ph and Ph are equal, we continue to

use Ph in the new Hamiltonian. To work in the rotating

frame, one need to only replace H by �H in Eq. (35); the right

hand side of the equation need not be changed since the radi-

al flux is the same in both frames.

Since the transport flow is slow compared with the

E�B drift flow, the halo particles very nearly follow curves

of constant �H . Thus, changing independent variables from

ð�h;Ph; tÞ to ð�h; �H ; tÞ in Eq. (35) is useful. The result is the

transport equation

@n

@t

����
�h; �H

þ @n

@ �H

����
�h;t

@ �H

@t

����
�h;Ph

þ @n

@�h

����
�H ;t

@ �H

@Ph

����
�h;t

¼ @ �H

@Ph

����
�h;t

@

@ �H
� _PhjTnþ ~D @ �H

@Ph

����
�h;t

@n

@ �H

����
�h;t

" #
: (41)

To complete the description of the transport equation, the

Hamiltonian �Hð�h;Ph; tÞ is needed. Formally, the Hamiltonian

is given by the expression

�H ¼ e/0½rðPhÞ� þ ed/½rðPhÞ; �h� � ðx1 þ DxÞPh; (42)

where /0ðrÞ is the unperturbed potential and d/ðr; �hÞ is the

perturbation caused by the mode.
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As mentioned in the Introduction, the transport equation

can be simplified by using the smallness of the halo density

nh in the resonant region. Our goal is to calculate the damp-

ing rate and frequency shift to first order in this small quanti-

ty. From Eqs. (22) and (23) one can see that the integral

expressions for the damping rate and frequency shift are al-

ready first order small in nh. Thus, the functional form of the

perturbed halo density in the resonant region need only be

accurate to zero order in nh. Likewise, the transport equation,

which determines the functional form, needs only be accu-

rate to zero order in the halo density.

Of course, nh is not a dimensionless parameter on which

to base a proper ordering scheme. The dimensionless order-

ing parameter is Nh=N � ðnhpR2
wÞ=N, which has the value

0.1 for typical experimental conditions. As we will see, even

the largest of the neglected terms is down by this dimension-

less factor.

Let us start by simplifying the Hamiltonian. In the reso-

nant region, where the transport equation and Hamiltonian

are needed, the dipole contribution to the perturbed potential

is given by the expression

d/1 r; tð Þ ¼ �erD N R1ð Þ � pR2
1n 0ð Þ R1ð Þ

h i
1

R2
w

� 1

r2

� �
e�ix1t�ia

� 4pe

ðRw

R1

2pr0dr0G1 rjr0
� �

dn01 r0; tð Þ; (43)

where use has been made of Eqs. (13) and (16). The first

term is the contribution to the dipole potential from the non-

resonant region, and the second is the contribution from the

resonant region. Simple estimates show that the second term

is smaller than the first term by a factor of Nh=N, so we ne-

glect the second term. The higher harmonic contributions to

the perturbed potential are comparably small and also are

neglected. The constant square bracket in the first term can

be replaced by N with a relative error that is down by a factor

Nh=N. Finally, there is a small �h-independent contribution to

the perturbed potential, which we also neglect. The radial

electric field from this potential is smaller than that from the

unperturbed potential /0ðrÞ by a factor that is much smaller

than Nh=N. Thus, the perturbed potential reduces to the sim-

ple form

d/ r; �h
� �

¼ �2eNDr
1

R2
w

� 1

r2

� �
cos �h: (44)

In the resonant region, the Hamiltonian can be simpli-

fied further by Taylor expansion with respect to Ph about

Ph ¼ Pw. Setting /0ðRwÞ ¼ 0, using @/0=@r ’ �2Ne=r near

the wall and using the resonance condition x1 ¼ xEðRwÞ
¼ ðc=BRwÞð@/0=@rÞjRw

yield the expansion

�H¼Ne2

2

Ph�Pw

Pw

� �2

�4D

Rw

Ph�Pw

Pw

� �
cos�hþRwPwDx

2DNe2

� �( )
;

(45)

where higher than second order terms in the small quantity

jPh � Pwj=Pw � 4D=Rw have been dropped and the purely

time-dependent term DxPw has been added.

We will see that the second term in the square bracket is

a constant of value 0:6ðNh=NcÞ. This term can be retained in

the analysis, but for consistency (and simplicity) is dropped

here yielding the reduced Hamiltonian

�H ¼ Ne2

2

Ph � Pw

Pw

� �2

� Ph � Pw

Pw

� �
� 4D

Rw
cos �h

" #
: (46)

The time dependence of the transport equation also can

be simplified by using the smallness of Nh=N. In the

Introduction, we noted that the halo evolution can be divided

into two stages. First the halo extends radially out to the

wall. At the wall, particles are continuously absorbed and a

quasi-steady state density distribution is established. We cal-

culate the damping rate and frequency shift for this quasi-

steady state density distribution.

The modifier “quasi” is used since the density continues

to change slowly due to the slow damping, that is, due to the

time dependence in D(t), which enters the Hamiltonian. In

Sections IV and V, we neglect this slow time dependence,

that is, neglect the first two terms on the left hand side of Eq.

(41), to obtain the simplified transport equation

@n

@�h

����
�H

¼ @

@ �H
� _PhjTnþ ~D @ �H

@Ph

����
�h

@n

@ �H

����
�h

" #
: (47)

One expects the corrections due to the neglected time depen-

dence to be small since _DðtÞ is first order small in nh. In

Section VI, a perturbative treatment is used to show that the

relative correction to the damping rate is approximately

Dc=c ’ 2Nh=N. The relative correction to the frequency shift

is even smaller.

For plotting purposes, it is useful to re-write the reduced

Hamiltonian in the scaled form

h ¼ p2 � p cos �h; (48)

where

p ¼ Ph � Pw

Pw

� �
Rw

4D

� �
; (49)

h ¼ 2 �H

Ne2

Rw

4D

� �2

: (50)

Likewise transport equation (47) takes the scaled form

@n

@�h

����
h

¼ @

@h
bn� d

@h

@p

����
�h

@n

@h

����
�h

" #
�h

; (51)

where

b ¼ � 2 _PhjT
Ne2

Rw

4D

� �2

; (52)

d ¼ b
T

Ne2

Rw

4D

� �
: (53)

To lowest order in the Taylor expansion, b and d are treated

as constant in the resonant region. Except for the smallest
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values of D accessed in the experiments, these constants are

ordered as d� b� 1.

Fig. 2 shows a contour plot of hð�h; pÞ in the resonant re-

gion near the wall. The ordinate of the plot ranges from

p¼ 0, the location of the wall, to p¼�2, which is enough of

the ð�h; pÞ phase space to show the resonant region. Of

course, the full phase space extends to much lower values of

p where the plasma core is located.

The contours of constant hð�h; pÞ are the trajectories that

would be followed by a particle moving only under the

E�B drift flow, and the arrows on the contours indicate the

direction of the flow. There are open trajectories extending

from �h ¼ 0 to �h ¼ 2p, closed trajectories, and a separatrix

between the two. The value of h is positive on the open tra-

jectories, zero on the separatrix, and negative on the closed

trajectories. The closed trajectories are the “cat’s eye”

trajectories.

Solving Eq. (48) yields a solution for the trajectories

p6 ¼
cos �h6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2�h þ 4h

p
2

; (54)

where the minus sign is to be used for the open trajectories,

on which pð�hÞ is a single-valued function of �h. Both the plus

and minus signs are needed for the closed trajectories, where

pð�hÞ is double-valued.

Adjacent to the wall, there is a thin scrape-off layer

where guiding center drift theory fails, and particles (elec-

trons) are absorbed by the wall. The scrape-off layer is at

least as thick as a cyclotron radius, which is of order 10�4

cm for the experiments. However, other effects, such as mis-

alignment of and ripples in the magnetic field, likely increase

the thickness of the scrape-off layer. In this regard, note that

the particles undergo rapid axial bounce motion and azi-

muthal drift motion relative to the wall, so any region of the

wall where the scrape-off mechanism reaches out furthest

sets the overall thickness of the scrape-off layer.

The scrape-off mechanism and the thickness of the

scrape-off layer Dr are not known experimentally, but we be-

lieve that the thickness Dr is small compared with the mode

amplitude D, for the range of amplitudes in the experiments.

This condition is necessary for the damping rate and the fre-

quency shift to be independent of thickness. Note that a

physical thickness Dr corresponds to a scaled momentum

thickness Dp ¼ Dr=2D.

Fig. 3 shows a blow up of the phase space near the

scrape-off layer, which, for the sake of the figure, is taken to

have the thickness Dp ¼ 10�2. The lower edge of the scrape-

off layer is shown as the black dashed line at p ¼ �Dp
¼ �10�2. The solid blue contour is the critical contour,

hð�h; pÞ ¼ hc, which just misses the scrape-off layer at �h ¼ 0

and �h ¼ 2p. Eq. (48) implies that the value of h on the critical

contour is given by hc ¼ ðDpÞ2 þ Dp ’ Dp ¼ 10�2. Also

shown is a red dotted-dashed curve that will be explained in

Section IV.

Fig. 4 shows the scrape-off layer and critical contour in

ð�h; hÞ-space. The solid blue horizontal line is the critical con-

tour h ¼ hc ’ 10�2, and the black dashed curve is the lower

edge of the scrape-off layer at h ¼ hð�h;�DpÞ ’ Dpðcos �hÞ.
Also shown is the red dotted-dashed curve of Fig. 3.

FIG. 2. Contours of hð�h; pÞ.
FIG. 3. Contours of h¼ hc (blue solid), k¼ hc (red dotted-dashed), and the

scrape-off layer (black dashed) in the ð�h; pÞ plane.

FIG. 4. Contours of h¼ hc (blue solid), k¼ hc (red dotted-dashed), and the

scrape-off layer (black dashed) in the ð�h; hÞ plane.
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For orientation, note that p increases upward in Fig. 3

and that h increases upward in Fig. 4. Thus, the core plasma

is below the region shown in Fig. 3 and above the region in

Fig. 4.

In the region h > hc of Fig. 4, the contours of constant h
extend from �h ¼ 0 to �h ¼ 2p. Since the points ð�h ¼ 0; hÞ
and ð�h ¼ 2p; hÞ are the same point physically, we require

that nð�h ¼ 0; hÞ ¼ nð�h ¼ 2p; hÞ in the region h > hc. In the

region 0 < h < hc, the contours of constant h encounter the

scrape-off layer before reaching �h ¼ 0 or �h ¼ 2p. The parti-

cle density within the scrape-off layer is taken to be zero.

This implies that no particles emerge from the scrape-off lay-

er and, when diffusion is taken into account, that the particle

density at the surface of the scrape-off layer be zero.

Otherwise, there would be an infinite density gradient at the

surface, which is unsustainable in the face of diffusion.

IV. ZERO DIFFUSION MODEL

As was noted earlier, the scaled diffusion coefficient, d,

is small compared with the scaled mobility coefficient b.

Motivated by this observation, the previous calculation15,16

of the damping rate assumed the limit of zero diffusion.

A review of this simple model is instructive since it

admits a trivial analytic solution for the steady state density

profile. Happily, the model yields the same answer for the

damping rate and frequency shift as a more realistic model

that includes small but finite diffusion [see Section V].

Setting d¼ 0 and treating b as a constant reduces trans-

port equation (51) to the simple form

@n

@�h

����
h

� b
@n

@h

����
�h

¼ 0; (55)

which immediately yields the solution

nð�h; hÞ ¼ g½hþ b�h�: (56)

The flow is incompressible along trajectories of constant

k ¼ hþ b�h.

To understand this result physically, note that constant b
implies constant _PhjT , which in turn implies that the mobility

flow is incompressible. The mobility flow can then be incor-

porated along with the incompressible E�B drift flow in a

Hamiltonian description. One can easily check that the

Hamiltonian

Kð�h;PhÞ ¼ Hð�h;PhÞ � _PhjT�h; (57)

generates both the E�B drift flow and the mobility flow.

Since we are neglecting any explicit time dependence in this

Hamiltonian, it is a constant of motion, that is, particles flow

along curves of constant K. The equation k ¼ hð�h; pÞ þ b�h is

simply the scaled version of Eq. (57). Since the Hamiltonian

flow is incompressible, the density is constant along the con-

tour of constant k.

The red dotted-dashed curves in Figs. 3 and 4 are two

views of the critical trajectory k¼ hc, drawn for the value

b ¼ 2� 10�4, which is characteristic of the experimental

conditions. This trajectory just misses the scrape-off layer at

�h ¼ 0 but enters the scrape-off layer just to the left of
�h ¼ 2p.

For the region h > hc, the periodic boundary condition

nð�h ¼ 0; hÞ ¼ nð�h ¼ 2p; hÞ plus the solution in Eq. (56)

implies the relation nð�h ¼ 0; hÞ ¼ nð�h ¼ 2p; hþ 2pbÞ.
Thus, nð�h ¼ 0; hÞ must be constant in the region h > hc. The

possibility of a periodic component with the very short peri-

odicity scale dh � 2pb is ruled out by even small diffusion.

This conclusion will be clarified in Section V.

Every point above the red dotted-dashed contour in Fig.

4, that is, above the trajectory k¼ hc, lies on a trajectory that

emerges from the line interval (�h ¼ 0; h > hc), on which the

density has a constant value. Thus, the density in the whole

region above the red dotted-dashed trajectory has this con-

stant value. The density below the red dotted-dashed trajec-

tory is zero, because there the points lie on trajectories that

emerge from the scrape-off layer. Thus, the density is given

by the expression

nð�h; hÞ ¼ nð0ÞðR1ÞU½h� hc þ b�h�; (58)

where UðxÞ is a step-function, and we have identified the val-

ue of the constant density as nð0ÞðR1Þ, the density at the be-

ginning of the resonant region.

Eqs. (22) and (23) for the damping rate and frequency

shift can be re-written in the form

@D

@t
¼ ecRw

B

4D

Rw

� �2 ð2p

0

d�h sin �h
ð0

p R1ð Þ
pdp � n �h; h �h; p

� �� 

;

(59)

DDx ¼ � ecRw

B

4D

Rw

� �2 ð2p

0

d�h cos �h
ð0

p R1ð Þ
pdp

� n �h; h �h; p
� �� 


; (60)

where the relations

r0dr0 ¼ 2DRwdp; (61)

G1 rjr0ð Þ
r

¼ 1

4pr0
r02

R2
w

� 1

 !
’ Dp

pR2
w

; (62)

have been used, and the Green’s function has been Taylor

expanded about r0 ¼ Rw in the last step of Eq. (62).

Substituting Eq. (58) for the density and carrying out the

p-integrals yields the expressions

@D

@t
¼ ecRw

B

4D

Rw

� �2

n 0ð Þ R1ð Þ

�
ð2p

0

d�h
sin �h

2
p2
�

�h; hc � b�h
� 


� p2 R1ð Þ
n o

; (63)

DDx ¼ � ecRw

B

4D

Rw

� �2

n 0ð Þ R1ð Þ

�
ð2p

0

d�h
cos �h

2
p2
�

�h; hc � b�h
� 


� p2 R1ð Þ
n o

; (64)

where p�ð�h; hÞ is given by Eq. (54) with the minus sign

chosen.
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In the curly brackets of both integrals, the constant term

p2ðR1Þ integrates to zero. Using the smallness of b, the other

term in the curly brackets may be Taylor expanded yielding

the expression

p2
�

�h; hc � b�h
� 


¼ p2
�

�h; hc

� �
� 2p� �h; hc

� � @p�
@h

�h; hc

� �� �
b�h:

(65)

The first term in this Taylor expansion does not integrate

to zero when substituted into Eq. (64) for the frequency shift,

so the smaller, second term may be neglected, yielding the

expression

DDx ¼ � ecRw

B

4D

Rw

� �2

n 0ð Þ R1ð Þ
ð2p

0

d�h
cos �h

2
p2
�

�h; hc

� �
:

(66)

For hc � 1, Eq. (54) implies that p2
�ð�h; hcÞ is approximately

given by cos2�h in the interval p=2 < �h < 3p=2 and is nearly

zero elsewhere. Thus, Eq. (66) reduces to the result

Dx ¼ � ecRw

BD

4D

Rw

� �2

n 0ð Þ R1ð Þ
ð3p=2

p=2

d�h
cos3�h

2

¼ 32

3

ecn 0ð Þ R1ð Þ
B

D

Rw
: (67)

Eqs. (15) and (17) show that the frequency x1 has the

value xEðRwÞ, assuming that the density has the constant val-

ue nð0ÞðR1Þ in the resonant region R1 < r < Rw. For the den-

sity solution given by Eq. (56), the density does not extend

at the constant value nð0ÞðR1Þ to the wall, but only to the

dotted-dashed trajectory in Figs. 3 and 4. The particles are

excluded from the closed cat’s eye orbits adjacent to the

wall. The frequency shift accounts for this exclusion, yield-

ing an effective exclusion length of Dr ¼ ð8=3pÞD.

In progressing from Eqs. (45) and (46), the quantity

ðRwPwDxÞ=ð2DNe2Þ was dropped, anticipating that it would

be small compared with unity. Substituting for Dx from Eq.

(67) shows that the quantity is indeed small

RwPwDx
2DNe2

¼ 8

3

R2
wn 0ð Þ R1ð Þ

N
’ 0:06: (68)

In Eq. (63) for the damping rate, the first term in Taylor

expansion (65) integrates to zero, since p2
�ð�h; hÞ is even in �h

about �h ¼ p and sin �h is odd. Thus, the integral is determined

solely by the second term in the Taylor expansion and

reduces to the form

@D

@t
¼ � ecRw

B

4D

Rw

� �2

n 0ð Þ R1ð Þ

�
ð2p

0

d�h sin �hp� �h; hc

� � @p�
@h

�h; hc

� �� �
b�h: (69)

Eqs. (48) and (54) imply the relation

p� �h; hc

� � @p�
@h

�h; hc

� �� �
¼ �cos �h þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2�h þ 4h

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2�h þ 4h

p : (70)

For h ¼ hc ’ Dp� 1, the right hand side has the approxi-

mate value 1 for p=2 < �h < 3p=2 and is nearly zero else-

where. Thus, Eq. (69) yields the result

@D

@t
¼ � ecRw

B

4D

Rw

� �2

n 0ð Þ R1ð Þ
ð3p=2

p=2

d�h sin �hb�h

¼ þ ecRw

B

4D

Rw

� �2

n 0ð Þ R1ð Þ � 2b: (71)

By using Eq. (52) and the relation

n 0ð Þ R1ð Þ _PhjT ¼
eB

2pc

���� dN

dt

����: (72)

Eq. (71) reduces to the previous result for the damping

rate,15,16 as given by Eq. (2).

The second term in Taylor expansion (65) represents the

particle density in the region between the solid and the

dotted-dashed curves of Figs. 3 and 4 [i.e., between h¼ hc

and k¼ hc], so the damping rate is determined exclusively by

particles in this region. From Fig. 3, one can see that these

are particles that are being swept around the cat’s eye orbits

to the scrape-off layer and wall.

The previous calculation15,16 guessed that the wave tor-

que is dominantly applied to these particles, approximated

that torque by the rate of change of angular momentum of

the particles, and evaluated the change in angular momentum

using the zero diffusion orbits discussed in this section.

A particle enters the region between the solid and the

dotted-dashed curves when mobility transports the particle

through the contour h¼ hc. The rate at which particles flow

through this contour between �h and �h þ d�h is proportional to

bnd�h. Since bn is constant, the flux is uniform in �h. Since all

of the particles enter the scrape-off layer at p ¼ �Dp, the av-

erage change in angular momentum for the particles is

simply

hDPhi ¼
ð2p

0

d�h
2p

Pw
4D

Rw
�Dp� p� �h; hc

� �� 

: (73)

Using the inequality hc ’ Dp� 1 and Eq. (54) yields the

result

DPh ’ �
eBRw

pc

ð3p=2

p=2

d�h cos �h ¼ 2

p
eBRwD

c
; (74)

which is the result quoted in the Introduction. The rate of

change of angular momentum was then written as

jdN=dtjhDPhi and used as the torque in the torque balance

equation to obtain the damping rate in Eq. (2).

Since this previous calculation approximates the wave

torque on the halo particles by the rate of change of halo par-

ticle angular momentum, omitting the torque due to the

transport, one may ask why the present and previous calcula-

tions agree. The answer is that the torque exerted on a parti-

cle while it is being swept around the cat’s eye orbit is small,

of order b. Also, the quantity jdN=dtj is first order in b, so

the correction would be of order b2. Likewise in the Taylor
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expansion of Eq. (65) only the term first order in b was

retained. Thus, the two calculations are accurate only to or-

der b, and differences would appear in order b2.

V. DIFFUSIVE BROADENING

An obvious criticism of the zero-diffusion model is that

it leads to an infinite density gradient at the leading edge of

the halo [i.e., at k¼ hc], and even a small diffusion gradient

must broaden such a gradient. This broadening is worrisome

since the damping rate in the zero diffusion model is deter-

mined by a thin ribbon of particles at the leading edge of the

halo. Moreover, for the conditions of the experiments, the

diffusively broadened layer is much wider than the ribbon.

Nevertheless, we will find that the answer for the damping

rate is not changed significantly, provided the diffusive

broadening is not too large, as will be specified by con-

straints on the size of the diffusion coefficient.

Numerical solutions of transport equation (51) are

obtained in the Appendix. The boundary conditions imposed

on the solution are that nð�h; hÞ approaches the constant value

nð0ÞðR1Þ for sufficiently large h, that nð�h ¼ 0; hÞ ¼ nð�h ¼
2p; hÞ for h > hc and that nð�h; hÞ be zero at the surface of the

scrape-off layer. The dynamics itself will prevent particles

from reaching the contour h¼ 0.

Fig. 5 shows a contour plot of the relative density

nð�h; hÞ=nð0ÞðR1Þ obtained for the transport coefficient values

b ¼ 10�5 and d ¼ 4� 10�7, which are characteristic values

for the experiments. Only the relative density need be speci-

fied since the transport equation is linear and the boundary

conditions are homogeneous. The critical contour h¼ hc is

again drawn as a solid blue line. Likewise, the red dotted-

dashed line is the trajectory k¼ hc, and the dashed black

curves are the surface of the scrape-off layer. Clearly, the

thin ribbon between the solid blue line and the dotted-dashed

red line is very narrow compared with the width of the diffu-

sive broadening.

In order to show the full range of diffusive broadening,

the range of h values shown in Fig. 6 is larger than that in

Fig. 5. The upper dotted blue line in Fig. 6 shows the h-scale

length for diffusive broadening in the region h > hc, and the

lower dotted blue line shows the scale length in the region

0 < h < hc. The diffusive broadening scales are different in

the two regions, since the boundary conditions of the trans-

port equation (51) are different in the two regions.

To estimate the h-scale length for diffusive broadening

in the region h > hc, we use a perturbation expansion of Eq.

(51) based on the smallness of b and d. Substituting the ex-

pansion nð�h; hÞ ¼ nð0Þð�h; hÞ þ nð1Þð�h; hÞ, where nð1Þ=nð0Þ is

first order in b and d, yields the zeroth-order equation

@nð0Þ=@�h ¼ 0 and its simple solution nð0Þ ¼ nð0ÞðhÞ.
In first order, the expansion yields the equation

@n 1ð Þ

@�h
¼ @

@h
bn 0ð Þ hð Þ � d

@h

@p

@n 0ð Þ

@h

" #
: (75)

Treating b and d as constants and using the periodic

boundary condition required for nð�h; hÞ in the region h > hc

yields the equation

0 ¼
ð2p

0

d�h
2p
@n 1ð Þ

@�h
¼ @

@h
bn 0ð Þ hð Þ � d

@h

@p

� �
@n 0ð Þ

@h

" #
; (76)

where

@h

@p

� �
�
ð2p

0

d�h
2p
@h

@p
¼ �

ð2p

0

d�h
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2�h þ 4h

p
: (77)

Here, the last expression follows from Eqs. (48) and (54).

Since the diffusion term will be significant only at the

leading edge of the halo where h� 1, the last integral in

Eq. (77) has the approximate value h@h=@pi ’ �2=p. Thus,

Eq. (76) reduces to the simple form

0 ¼ @

@h
n 0ð Þ hð Þ þ Dhð Þ1

@n 0ð Þ

@h

� �
; (78)

FIG. 5. Contour plot of the relative density nð�h; hÞ=nð0ÞðR1Þ. The black

dashed line is the scrape-off layer. The solid blue line and the red dotted-

dashed line are the critical contours h¼ hc and k¼ hc. The blue dotted line

represents the diffusive broadening layer ðDhÞ2.

FIG. 6. Contour plot of the relative density nð�h; hÞ=nð0ÞðR1Þ. The black

dashed line is the scrape-off layer. The solid blue line and the red dotted-

dashed lines are the critical contours h¼ hc and k¼ hc. The upper and lower

blue dotted line represent the diffusive broadening layer ðDhÞ1 and ðDhÞ2.
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where ðDhÞ1 ¼ 2d=pb. The solution is given by the

expression

n 0ð Þ hð Þ ¼ C1 þ C2 � C1ð Þexp � h� hc

Dhð Þ1

� �
; (79)

where C1 and C2 are constants. For h� hc 
 ðDhÞ1, the

density nð0ÞðhÞ has the constant value C1, which we identify

as the constant nð0ÞðR1Þ. The constant C2 is the value of the
�h-averaged density at h¼ hc, nð0ÞðhcÞ. This latter constant

must be determined by matching onto the solution for

h < hc.

One can continue with the perturbation analysis to deter-

mine the �h-dependent part of the density, but the conclusion

is that ðDhÞ1 sets the diffusive broadening scale. The upper

blue dotted curve in Fig. 6 is the line h ¼ ðDhÞ1 ¼ 2d=pb.

Physically, this broadening scale is determined by a competi-

tion between diffusion and mobility.

In the region 0 < h < hc, a given particle makes a single

pass through the ð�h; hÞ space and then is lost to the scrape-

off layer, so the diffusive broadening in this region is deter-

mined by a competition between diffusion and E�B drift

streaming. Neglecting the mobility term in Eq. (51) and us-

ing the small-h expansion @h=@p ’ �j cos �hj in the diffusion

term yields the diffusive broadening scale

ðDhÞ2ð�hÞ ¼ 2d
ð�h

0

d�h
0j cos �h

0j

" #1=2

: (80)

The lower dotted blue curve in Figs. 5 and 6 is a plot of

ðDhÞ2ð�hÞ. For the conditions of the experiment, ðDhÞ1 is sub-

stantially larger than ðDhÞ2ð�hÞ.
If the diffusive broadening scales ðDhÞ1 and ðDhÞ2 satisfy

appropriate constraints, the details of the density distribution

are not needed to calculate the damping rate and frequency

shift. First, we require that there exists a contour h¼ hb, where

hb � hc is a few times larger than ðDhÞ1 and yet hb � 1. This

is possible if ðDhÞ1 � 1. Recall that hc ’ Dp� 1. The den-

sity then has the constant value nð0ÞðR1Þ for h 	 hb.

Second, we require that ðDhÞ2ð�h ¼ 3p=2Þ be small com-

pared with hc ’ Dp, so that particles cannot reach the con-

tour h¼ 0. Note here that the scrape-off layer on the right

hand side of Fig. 5 intersects the contour h¼ 0 at �h ¼ 3p=2.

Physically, the particles must be swept to the scrape-off layer

by the E�B drift flow before the diffusive broadening can

move the particles to h¼ 0.

In summary, the required inequalities are the following

Dhð Þ1 ¼
2d
pb
¼ 2

p
T

Ne2

Rw

4D
� 1; (81)

1
 Dpð Þ2 ’ h2
c 
 Dhð Þ2 3p=2ð Þ

� 
2 ¼ 6d ¼ 3

2

Tb
Ne2

Rw

D
;

(82)

which are consistent with the experimental conditions except

for the smallest values of D.

By using the constancy of nð�h; hÞ for h > hb, Eqs. (59)

and (60) can be re-written in the form

@D

@t
¼ ecRw

B

4D

Rw

� �2 ð2p

0

d�h sin �h
n 0ð Þ R1ð Þ

2
p2
�

�h; hb

� �
� p2 R1ð Þ

h i
þ
ð0

hb

dhp� �h; h
� � @p� �h; h

� �
@h

n �h; h
� �( )

; (83)

DDx ¼ � ecRw

B

4D

Rw

� �2 ð2p

0

d�h cos �h
n 0ð Þ R1ð Þ

2
p2
�

�h; hb

� �
� p2 R1ð Þ

h i
þ
ð0

hb

dhp� �h; h
� � @p� �h; h

� �
@h

n �h; h
� �( )

; (84)

where the differential relation dp ¼ dhð@p=@hÞ�h has been

used in the integrals.

In both square brackets, the constant term p2
�ðR1Þ inte-

grates to zero. By even-odd arguments, the term p2
�ð�h; hbÞ

integrates to zero in Eq. (83), but not in Eq. (84). The inte-

gral over h makes the only contribution in Eq. (83) and may

be neglected in Eq. (84). The integral is negligible there be-

cause hb � 1. Thus, the equations reduce to the form

@D

@t
¼ecRw

B

4D

Rw

� �2ð2p

0

d�h sin�h
ð0

hb

dhp� �h;h
� �@p� �h;h

� �
@h

n �h;h
� �

;

(85)

DDx¼� ecRw

B

4D

Rw

� �2 n 0ð Þ R1ð Þ
2

ð2p

0

d�h cos �hp2
�

�h;hb

� �
: (86)

The reason that the diffusive broadening makes only a

negligible change in the frequency shift is easy to understand.

The leading edge of the halo has the approximate �h-depen-

dence p�ð�h; 0Þ, which varies by order unity as �h varies over

the interval ð0; 2pÞ. On the other hand the diffusive broaden-

ing is small compared with unity, ðDp�Þbroad ’ ð@p�=@hÞ
ðDhÞ1 � 2d=pb� 1, so the change produced by the broaden-

ing is negligible.

To evaluate the damping rate in Eq. (85) first recognize

that p� sin �h ¼ @h=@�h, based on the form of h in Eq. (48).

Such recognition, together with the chain rule ð@h=@�hjp�Þ
ð@p�=@hj�hÞ ¼ �@p�=@�hjh, and an integration by parts over
�h since p�ð�h; hÞ and nð�h; hÞ are periodic in �h, allows us to re-

write Eq. (85) as

@D

@t
¼ ecRw

B

4D

Rw

� �2 ð2p

0

d�h
ð0

hb

dhp� �h; h
� � @n

@�h

����
h

: (87)

Since hb � 1; p�ð�h; hÞ can be approximated by

p�ð�h; 0Þ, which is given by p�ð�h; 0Þ ¼ cos �h from Eq. (54)
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for p=2 < �h < 3p=2 and is zero elsewhere. Thus, Eq. (87)

reduces to the form

@D

@t
¼ ecRw

B

4D

Rw

� �2 ð3p=2

p=2

d�h cos �h
ð0

hb

dh
@n

@�h

����
h

: (88)

Substituting for @n=@�hjh from transport equation (51), carry-

ing out the h-integral and using the relations nð�h; hbÞ
¼ nð0ÞðR1Þ and @n=@hð�h; 0Þ ¼ 0 yields the expression

@D

@t
¼ � ecRw

B

4D

Rw

� �2 ð3p=2

p=2

d�h cos �h � bn 0ð Þ R1ð Þ; (89)

which reduces to the result

dD

dt
¼ ecRw

B

4D

Rw

� �2

n 0ð Þ R1ð Þ � 2b ¼ � 2

p
jdN=dtj

N
Rw: (90)

This result is the same as the damping rate for zero-diffusion

given in Eqs. (71) and (2).

This analytic solution for the damping rate approximates

the d�hdh integrals in Eq. (85), denoted as

J �
ð2p

0

d�h sin �h
ð0

hb

dhp�
@p

@h

n �h; h
� �

n 0ð Þ R1ð Þ
; (91)

by the value 2b, which significantly is independent of d, pro-

vided d is not too large. Fig. 7 shows a comparison of this

analytical approximation for the integral J to a direct numeri-

cal evaluation using the numerical solutions for the diffu-

sively broadened density found in the Appendix.

The numerical evaluations are obtained for many values

of b, shown in the figure, and for D ¼ 0:1Rw and two distinct

values of T, T ¼ 1:6� 10�2Ne2 and T ¼ 4� 10�2Ne2.

These values are characteristic of the experiment. The value

of hb is taken to be large enough that nð�h; hÞ=nð0ÞðR1Þ is

close to 1 and the integral J is independent of hb.

Results for T ¼ 1:6� 10�2Ne2 are shown as circles and

for T ¼ 4� 10�2Ne2 as squares. The red dashed line is the

analytic result 2b. Significantly, the circles and squares lie

close to the red line, with slightly larger values. The origin

of the difference lies in the approximation made in Eq. (88)

in the analytic evaluation. We neglected the small finite h in

p�ð�h; hÞ. However, when the finite value of 0 < h < hb is

retained in the numerical evaluation, values slightly larger

than the analytic approximation is obtained.

That diffusive broadening does not change the damping

rate significantly, even when the broadening is much wider

than the thin region responsible for damping in the zero-

diffusive model [i.e., ðDhÞ1 
 2pb] may be surprising. All

that is needed is that ðDhÞ1 and ðDhÞ2 satisfy inequalities

(81) and (82).

To understand the near equality of the two damping

rates, first note that the scaled flow of particles through con-

tour hb is simply 2pbnð0ÞðR1Þ, which is the same as the flow

through contour hc in the zero diffusion model. Provided that

ðDhÞ2 � Dp, all of the particles that pass through contour

h¼ hb ultimately enter the scrape-off layer. To calculate the

average change in angular momentum of the particles as

they move from h¼ hb to the scrape-off layer, one needs to

only replace hc by hb in Eq. (73). By inequality (82), hb is

small compared with unity and the modified version of Eq.

(73) still reduces to the result in Eq. (74). Thus, the average

rate of change of angular momentum for the particles is the

same in the two cases.

The question remains as to whether or not the average

rate of change of angular momentum is a good approxima-

tion to the torque exerted by the wave on the particles. In the

zero diffusion model, particles cross the contour h¼ hc and

then enter the scrape-off layer in a single pass through the

ð�h; hÞ space. In scaled variables, the change in angular mo-

mentum of a particle caused by the transport during this peri-

od is of order dp � b, which is much smaller than the

average change dp � 1.

In the finite diffusion case, particles cross the contour

h¼ hb and then make many passes through the ð�h; hÞ space

before reaching the scrape-off layer, so torque due to trans-

port has more time to act on the particle. The change in an-

gular momentum due to the transport is of order dp � hb,

which is much larger than b, but according to inequality (82)

is still small compared with the average change in angular

momentum dp � 1. Thus, the rate of change of angular mo-

mentum of the particles still provides a good approximation

to the torque exerted by the wave. Therefore, the damping

rates for the two cases are nearly the same.

VI. CORRECTION FOR TIME DEPENDENCE IN D(t)

Here, we obtain a perturbative correction to the damping

rate due to the explicit time dependence in the Hamiltonian,

that is, due to the time dependence in D(t). Unscaled

equations must be used to obtain this correction since D(t)
enters the scaling. The first two terms on the left hand side of

Eq. (41) give rise to the correction.

To estimate the relative size of these two terms, we sub-

stitute the approximate zero-diffusion solution nð�h; �H ; tÞ
¼ nð0ÞðR1ÞU½ �H � �HcðtÞ�, obtaining the relation @n=@tj�h; �H

¼ ð�@ �Hc=@tÞð@n=@ �HÞ�h;t. One can show that j@ �Hc=@tj is

small compared with j@ �H=@tj for Dp� 1, so the first term

may be neglected in comparison with the second. The equa-

tion then takes the form

FIG. 7. Values of damping integral J. Numerical results are in squares for

T ¼ 4� 10�2Ne2 and in circles for T ¼ 1:6� 10�2Ne2, with D ¼ 0:1Rw.

Red dashed line shows the approximate analytical result J ’ 2b.
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@n

@�h

����
�H ;t

¼ @

@ �H
� _PhjTnþ @ �H

@Ph

����
�h;t

~D @n

@ �H

����
�h

" #
þ @Ph

@t

����
�H ;t

@n

@ �H

����
�h;t

;

(92)

where

@Ph

@t

����
�h; �H

¼ �
@ �H=@tj�h;Ph

@ �H=@Phj�h;t
; (93)

is the rate at which a contour �Hð�h;Ph; tÞ ¼ constant moves

upward in the ð�h;PhÞ phase space.

Anticipating that we will need Eq. (92) only for �h in

the range p=2 < �h < 3p=2 and only for small values of h,

Eq. (54) implies that

Ph � Pw

Pw
’ 4D tð Þ

Rw
cos �h; (94)

which in turn implies the relation

@Ph

@t

����
�h; �H

’ 4 _D tð Þ
Rw

Pw cos �h: (95)

Changing to scaled variables, choosing an angle in the

range p=2 < �h < 3p=2, and integrating with respect to h
from h¼ hb to h¼ 0 yield the result

ð0

hb

dh
@n

@�h

����
h;t

¼ �bn 0ð Þ R1ð Þ 1� 4 _DPw

Rw
_PhjT

cos �h

" #
: (96)

Comparing this result with Eqs. (88) and (89) shows that the

square bracket is a correction to the flux through the contour

h¼ hb to account for the fact that the contour moves in time.

Substituting this result into Eq. (88) and carrying out the
�h-integration yields the damping rate

dD

dt
¼ � c

1þ 2Nh=N
’ �c 1� 2Nh=Nð Þ; (97)

where c is the zero-diffusion damping rate in Eq. (71) and

Nh=N ’ 0:1.

VII. DISCUSSION

How general is the flux-driven damping mechanism dis-

cussed here? First note that the mechanism is not limited to

the case of an m¼ 1 mode. Subsequent to the experimental

discovery of the damping for an m¼ 1 diocotron mode, simi-

lar damping was observed for an m¼ 2 mode.15 Again, alge-

braic damping began when the halo particles reached the

resonant layer, which for the m¼ 2 mode is well separated

from the wall.

Because the resonant layer for the m¼ 2 mode is well

separated from the wall, one may ask what plays the role of

the wall in truncating particle orbits? Put another way, what

prevents the resonant particles from giving back angular mo-

mentum that they have received from the mode? We believe

that the answer is simply passage of the particles through the

“cat’s-eye” orbits in the resonant layer. Because of transport,

the particles cannot come back through these structures, and

in the one-way passage, the particles pick up significant an-

gular momentum from the mode, causing the damping. In

principle, this mechanism also would apply for m¼ 3 and

higher, but the resonant layer is closer to and even inside the

core for higher m modes, and such modes typically suffer

large ordinary Landau damping.

In this paper we do not treat the damping of the m¼ 2

mode in parallel with the damping of the m¼ 1 mode, be-

cause there are technical differences between m¼ 1 and

m¼ 2 cases. The m¼ 1 mode admits an analytic solution for

a general monotonically decreasing density profile, while the

m¼ 2 mode does not. The structure of the “cat’s-eye” orbits

differ, since the potential goes to zero at the resonant radius

for an m¼ 1 mode (i.e., at the wall), but not for the m¼ 2

mode. Also, the truncation of the orbits by the wall is differ-

ent than simply passing through the “cat’s eye” orbits. The

theory for the higher order modes will be discussed in a later

paper.

Broader than the flux-driven damping mechanism itself

is the idea that all Landau-type damping (or growth), that is,

damping (or growth) due to interaction with resonant par-

ticles, can be thought of as resulting from the action of the

bare electric field from the resonant particles back on the

mode. The resonant particles travel at the mode phase veloci-

ty, so the electric field from the resonant particles drives the

mode resonantly. The idea is not limited to the case where

the azimuthal mode number is unity and the field from the

resonant particles is uniform, but applies for arbitrary mode

number. This general idea was elaborated in a recent

paper.26
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APPENDIX: NUMERICAL SOLUTION FOR DIFFUSIVE
BROADENING

This Appendix describes a numerical solution of the

transport equation (51) using an eigenfunction expansion.

This solution follows a similar approach in the work of

Dubin and Tsidulko.27

Fig. 8 illustrates the region of the solution of Eq. (51). In

this figure, we set p ¼ Dp ¼ 10�2 to be the scrape-off layer.

The scrape-off layer is the black solid contour h ¼ Dp cos �h,

with smaller term ðDpÞ2 dropped. The critical contour, which

is the blue dotted-dashed curve, is h ¼ hc ¼ Dp. The orange

dotted curve is the contour h¼ 0.

The region for which nð�h; hÞ is solved is bounded in the

figure by the scrape-off layer and the straight lines �h ¼ 0 and
�h ¼ 2p. It can be divided into three region of interests, which

are h > hc; 0 < h < hc and h< 0. The three regions are to be
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explained in the paragraphs that follow. Meanwhile three

boundary conditions of Eq. (51) will be introduced in the

explanation.

The first region, h > hc, is taken to extend to infinite h,

since we are interested in the regime h < hb � 1 and the

non-resonant region is far from the wall. At large h, the den-

sity is equal to that at the edge of the non-resonant region.

Therefore,

lim
h!1

nð�h; hÞ ¼ nð0ÞðR1Þ; (A1)

which is our first boundary condition.

Our second boundary condition is the periodic boundary

condition f ð�h ¼ 0; hÞ ¼ f ð�h ¼ 2p; hÞ, as �h ¼ 0 and �h ¼ 2p
refer to the same physical point. It only applies in the region

h > hc, which is the only region that can access �h ¼ 0 and
�h ¼ 2p.

The second region, 0 < h < hc, is the region of open

orbits in contact with the scrape-off layer, where the density

must be zero, i.e.,

nð�h; h ¼ Dp cos �hÞ ¼ 0: (A2)

In this region, the range of �h that a particle can access is

bounded by the scrape-off layer.

The third region, h< 0, differs from the first and second

regions in that the contours are closed in this region. We con-

tinue to apply Eq. (51) in this region, and use the same zero-

density boundary h ¼ Dp cos �h as in the second region.

However in Eq. (51), the factor @h=@p takes p ¼ p�ð�h; hÞ
from Eq. (54) when pð�h; hÞ is expressed, and misses the p ¼
pþð�hÞ part of the closed contour for h< 0. Fortunately, the

error is negligible because this region is dynamically inac-

cessible to the particles, as discussed in the small-diffusion

condition (82) in Section V. There are literally no particles

for h< 0, and thus n is vanishingly small in this region.

Since Eq. (51) is linear and the boundary conditions are

homogeneous, the density may be normalized as f �
n=nð0ÞðR1Þ and the equation rewritten as

@f

@�h

����
h

¼ @

@h
bf � d

@h

@p

����
�h

@f

@h

����
�h

" #
: (A3)

In order to fit the boundary condition more easily, we

change variables from ð�h; hÞ to ð�h; xÞ, where x�h�Dpcos�h.

Fig. 9 shows the region of solution in the ð�h;xÞ space. The black

solid line is the scrape-off layer. The blue dotted-dashed curve is

the critical contour h¼hc and the orange dotted curve is the con-

tour h¼0. As we see from the figure, the region of solution in

Fig. 8 is reshaped to the semi-infinite rectangular region in Fig.

9. The boundaries of the region of solution are lines x¼0, �h¼0,

and �h¼2p, and the region extends to infinite x. As discussed,

when the region was described in ð�h;hÞ-space, the solution is

solved considering the three subregions h>hc;0<h<hc, and

h<0 as a whole, although we expect the value of f in the dynam-

ically inaccessible region h<0 to be vanishingly small.

In this new set of variables and the normalized density,

the first boundary condition, which is the large-h limit (A1),

is expressed as

lim
x!1

f ¼ 1: (A4)

The second boundary condition, which is the periodic bound-

ary condition, is rephrased as f ð�h ¼ 0; xÞ ¼ f ð�h ¼ 2p; xÞ. It

applies only to the region h > hc, the same as when the re-

gion was described in terms of ð�h; hÞ. Since the region h >
hc reaches all values of x> 0, the periodic boundary condi-

tion applies for all x> 0.

More importantly, at the scrape-off layer, the third

boundary condition (A2) is now expressed as

f ð�h; x ¼ 0Þ ¼ 0; (A5)

which is much easier to work with as the scrape-off layer is

straightened to be the horizontal line x¼ 0, and �h-depen-

dence is avoided.

By using the relations @hj�h ¼ ð@x=@hÞ@xj�h and @�h jh
¼ ð@x=@�hÞ@xj�h þ @�h jx Eq. (A3) is rewritten in the form

FIG. 9. Illustration of the region of solution in ð�h; xÞ-space. The black solid

line is the scrape-off layer. The blue dotted-dashed curve is the critical con-

tour h¼ hc. The orange dotted curve is the contour h¼ 0.

FIG. 8. Illustration of the region for which Eq. (51) is solved. The black sol-

id curve is the scrape-off layer. The blue dotted-dashed curve is the critical

contour h¼ hc. The orange dotted curve is the contour h¼ 0.
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@f

@�h

����
x

þ Dp sin �h
@f

@x

����
�h

¼ @

@x
bf � d � g x; �h

� � @f

@x

����
�h

" #
: (A6)

Here, gð�h; xÞ � @h=@p is explicitly expressed as

gð�h; xÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2�h þ 4hð�h; xÞ

q
; (A7)

using the relations (48) and (54). The fact that we are inter-

ested in the region 0 < h < hb � 1 permits us to remove the

x-dependence in g by neglecting h and thus approximating

gð�h; xÞ ’ gð�hÞ � �j cos �hj: (A8)

Since f ð�h; xÞ and gð�hÞ are both periodic in �h for all val-

ues of x, they may be expressed as the Fourier Series

f ð�h; xÞ ¼
Xþ1

l¼�1
flðxÞeil�h ; (A9)

gð�hÞ ¼
Xþ1
�¼�1

g�e
i��h ; (A10)

where g� ¼ �
Ð 2p

0
d�hj cosð�hÞje�i��h=ð2pÞ. Note that f�l ¼ f �l

and g�� ¼ g�� as f and g are real functions. In practice, both

series must be truncated when solving numerically for [i.e.,

fl ¼ 0 if jlj > Nf , and g� ¼ 0 if j�j > Ng]. Nf and Ng are

positive integers chosen to be sufficiently large to resolve

gð�hÞ and to obtain a converged solution of f ð�h; xÞ.
Substituting Fourier expansions (A9) and (A10) into Eq.

(A6), using the relation sin �h ¼ ðei�h � e�i�hÞ=ð2iÞ and equat-

ing coefficients of eil�h on both sides yields the differential

equations

ilfl xð Þ þ i
Dp

2
f 0lþ1 xð Þ � f 0l�1 xð Þ
h i

¼ bf 0l xð Þ � d
XNg

�¼�Ng

g��f
00
lþ� xð Þ: (A11)

This is a set of 2Nf þ 1 linear coupled ODEs, as the subscript

l counts from �Nf to Nf. Since the coefficients are constants,

we seek a solution of the form flðxÞ ¼ Cle�sx. Substituting

this form of solution into Eq. (A11) yields a set of eigenvalue

equations

ilCl � is
Dp

2
Clþ1 � Cl�1½ � ¼ �sbCl þ s2d

XNg

�¼�Ng

g��Clþ�;

(A12)

with s as the eigenvalue and Cl as the l-th element of the ei-

genvector. By inspection, there is an obvious eigenvalue

s¼ 0 with the coefficient Cl ¼ dl0 as the eigenvector. This

eigenvector corresponds to the constant eigenfunction

flðxÞ ¼ dl0, and we set C0 to be 1 so as to satisfy Eq. (A4)

for large x. Other physically admissible eigenvalues are the

ones with positive real parts, denoted as fsrg with the

eigenvector fCl;rg, since the eigenfunctions die out in the

form of e�Re½sr �xe�iIm½sr �x when x is large. The subscript r
refers to the r-th eigenvalue and eigenvector.

Both the eigenvalues and the eigenvectors are obtained

numerically. It is noteworthy that in the numerical solutions,

the eigenvalue with the smallest positive real part is equal to

pb=ð2dÞ, which is the reciprocal of the diffusive broadening

scale ðDhÞ1 in Eq. (81). Its eigenfunction, which then has the

form e�x=ðDhÞ1 , is responsible for the change of density over

that broadening region. Other eigenvalues are not as recog-

nizable though, and the respective eigenfunctions superpose,

together with that for the scale ðDhÞ1, to produce the delicate

density structure around h¼ hc in Fig. 6.

The total solution is a superposition of all the

eigenfunctions

f ð�h; xÞ ¼ 1þ
X

r

XNf

l¼�Nf

ArCl;re
�srxeil�h ; (A13)

where Ar is the coefficient of the r-th eigenfunction.

We have to satisfy the boundary condition at the scrape-off

layer; therefore, by following Eq. (A5), we obtain the condition

0 ¼ f ð�h; x ¼ 0Þ ¼ 1þ
X

r

XNf

l¼�Nf

ArCl;re
il�h : (A14)

Collecting coefficients for every Fourier component yields

the set of coupled equations

0 ¼ dl0 þ
X

r

ArCl;r; (A15)

from which fArg is solved numerically.
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