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Abstract of the Dissertation

Measurement of the Magnetic and Temperature

Dependence of the Electron-electron Anisotropic

Temperature Relaxation Rate

by

Bret Robert Beck

Doctor of Philosophy in Physics

University of California, San Diego, 1990

Professor John H. Malmberg, Chairman

Using a pure electron plasma, the magnetic field and temperature depen-

dences of the electron-electron anisotropic temperature relaxation rate are measured.

The anisotropy is characterized by 111 =1= Tl., the temperatures associated with the

degrees of freedom parallel and perpendicular to the applied magnetic field. The

relaxation rate is measured for large magnetic fields (30 kG to 60 kG) and for an

unusual plasma temperature range (25 K to 104 K). In this parameter regime, the

ratio of the gyroradius, re, to the classical distance of closest approach, b, plays an

important role in determining the relaxation rate.

At high temperatures the plasma is in the regime re/b > 1. (At all temper-

atures AD ~ re where AD is the Debye length.) In this regime the measured rates

are compared to a Fokker-Planck prediction as modified by a strong magnetic field

approximation due to Montgomery, Joyce and Turner. The rates are also compared

to a Fokker-Planck prediction without this approximation. The modified prediction
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yields much better agreement to the measured rates.

For temperatures where re/b f'V 1, the measured rate peaks. As the tempera-

ture is lowered below this point, the plasma enters a regime where re/ b < 1. Here, as

re/b goes from about 1 to about 0.03 the measured rate normalized by T3
/
2 drops by

a factor of 104• (Whereas, for re/b ~ 1 the normalized rate is essentially independent

of temperature.) This rapid decrease is consistent with a theoretical prediction of

O'Neil and Hjorth, who argue that the collisional dynamics is constrained by a many

electron adiabatic invariant in the regime re/b ~ 1.

The plasma is contained axially by a potential well and radially by the mag-

netic field. To measure the relaxation rate the shape of the potential well is modu-

lated sinusoidally which similarly modulates the plasma length parallel to the mag-

netic field. If the modulation frequency is neither slow nor rapid compared to the

relaxation rate the compression is irreversible and the plasma is heated. Maximum

heating per cycle is predicted to occur when 27r f = 3v, where v is the relaxation

rate and f is the modulating frequency. The relaxation rate is thus determined by

measuring which modulating frequency produces the most heating per cycle.
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Chapter 1

Introduction and Summary

This thesis describes an experiment in which the anisotropic temperature re-

laxation rate for a pure electron plasma is measured. The anisotropy is characterized

by 11, =1= T.l., where these are the temperatures associated with the degrees of freedom

parallel and perpendicular to an applied magnetic field. 111 and T.l. are isotropized

to an equilibrium temperature by electron-electron collisions. We have measured the

magnetic field and temperature dependence of the anisotropic temperature relaxation

rate (henceforth to be called the relaxation rate.) over a range from a magnetized

regime ( AD > rc > b ) to a strongly magnetized regime ( AD > b > rc). Here,

AD is the Debye length, rc is the gyroradius and b is the classical distance of closest

approachl.

The first calculations of velocity space scattering in plasmas treat collisions

as isolated, two particle events (i.e. binary collisions), and considered a nonmagne-

tized plasma. These assumptions allow the calculations to employ the differential

scattering cross section for a two particle coulomb collision. In addition, it is com-

mon (even in more recent calculations) to assume that a collision produces only

a small perturbation to a particle's orbit, and then calculate the perturbation by

integrating along unperturbed particle orbits. The procedure of integrating along

1Commonly used symbols are listed in Appendix A.9. In this thesis we use Gaussian units.

1
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unperturbed orbits will be called the unperturbed orbit approximation. As a conse-

quence of the binary collision assumption and the unperturbed orbit approximation,

the first calculated velocity space scattering rates diverge logarithmically at both

small and large impact parameters. (The impact parameter is the distance of closest

approach that two particles would achieve if there were no interaction between the

particles.) This logarithmic dependence of the relaxation rate on the small and large

impact parameters is written as 10g(Pmax/Pmin)where Pmaxis some maximum impact

distance, Pmin is some minimum impact distance, and 10g(Pmax/Pmin) is called the

coulomb logarithm factor.

The divergence of the calculated velocity scattering rates at small impact

parameters can be traced back to the unperturbed orbit approximation. One expects

this approximation to break down when Pmin'" b, and for this reason one typically

lets Pmin = b. Of course, this implies that collisions with impact distances less

than Pminare ignored in these calculations. It can be shown that when collisions

with impact distances less than b are neglected, the error in the calculated velocity

scattering rates are small as long as Pmax~ b (see reference [6]).

The divergence of the calculated velocity scattering rates at large impact

parameters can be traced back to the binary collision assumption. The binary col-

lision assumption neglects effects such as plasma shielding which will reduce the

interaction between two particles when they are separated by large distances. This

reduction results in less scattering at large impact distances than the binary collision

approximation predicts, and would cause the calculations to converge at large impact

distances if properly included. For a plasma in the regime rc ~ AD ~ b, PmaxIS

typically set to AD. The coulomb logarithm factor then becomes log(,\o/b).

Note that on the first calculations the minimum and maximum impact dis-

tances, b and AD, are introduced in an ad hoc manner. However, slightly more
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rigorous calculations, such as the Lenard-Balescu approach which includes plasma

correlation effects to lowest order in the plasma parameter 9 = 1/ (nAt», also predict

a Pmax of about AD.

For the regime AD ~ re ~ b, Montgomery, Joyce and Turner show that

Pmax is about re, so that the coulomb logarithm becomes log(re/b). For the plasmas

studied in this thesis AD is always much greater than re.

When AD is much larger than both re and b, but re is not much larger than

b, traditional calculations are expected to fail. However, O'Neil and Hjorth [48]

have recently calculated the anisotropic temperature relaxation rate due to electron-

electron collisions for a pure electron plasma in the strongly magnetized regime (i.e.

re ~ b), with the assumption that the plasma is weakly correlated (i.e. n-I/3 ~ b).

The O'Neil-Hjorth calculation uses a Boltzmann equation, and thus properly treats

collisions with small impact distances. They predict a rapid decrease in the relaxation

rate as re/b is decreased.

The rapid decrease in the relaxation rate as re/b is decreased is due to a

many electron adiabatic invariant, which for uniform magnetic field simplifies to the

total perpendicular energy of the electrons. Were the adiabatic invariant an exact

constant of the motion, no exchange of energy would be possible between the parallel

and the perpendicular degrees of freedom. However, an adiabatic invariant is not

strictly conserved, and there is an exponentially small exchange of energy between

the parallel and the perpendicular degrees of freedom per collision as a result of the

adiabatic invariant. The smaller re/b the smaller the exchange of energy per collision

on the average; hence a rapid decrease in the relaxation rate as re/b is decreased.

In Fig. 1.1 we show our most important result. In this figure we have plotted

relaxation rates versus re/b. We have normalized the relaxation rate by nb2vT where

n is the density and VT is the thermal velocity. The diamond points, 0, in Fig. 1.1 are
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our data. The square points, 0, are results previously obtained by Hyatt, Driscoll

and Malmberg (we discuss their results on page 7). The dashed line is a Fokker-

Planck prediction of the relaxation rate due to Ichimaru and Rosenbluth [28]. We

have modified the Ichimaru-Rosenbluth prediction as per Montgomery, Turner and

Joyce [41] by effectively cutting off the coulomb interaction at a distance of re (i.e.

the coulomb logarithm is log(re/ b)). The solid line is a plot of the O'N eil-Hjorth pre-

diction. Note that the comparison between the experimental data (both our results

and the Hyatt, Driscoll and Malmberg results) and the predictions are absolute (i.e.

there are no adjustable parameters in either the experimental data or the theories).

Our results are consistent with the Fokker-Planck prediction when re/b ~ 1,

provided the coulomb interaction is effectively cut off at a distance of r e instead of

AD. And, our results clearly demonstrates that a rapid decrease in the normalized

relaxation rate occurs as re/ b is decreased below the point re/ b ~ 1. This rapid

decrease is consistent with the O'Neil-Hjorth prediction when re/b ~ 1. This, as

O'Neil [44] has argued, is most likely due to a many electron adiabatic invariant

which constrains the exchange of perpendicular and parallel energy.

We should warn the reader that the close agreement between our data and

the O'Neil-Hjorth prediction for 0.02 ~ re/b ~ 0.2 may be fortuitous. Recent cal-

culations [19] of the relaxation rate yield a rate which is about a factor of 4 larger

than the O'Neil-Hjorth prediction when re/b '" 0.01. Note that for re/b ~ 1 the

normalized relaxation rate is such a rapidly decreasing function of re/b ex T3/2,

that changing the temperature by about 30% results in a factor of 4 change in the

normalized relaxation rate. Consequently, this factor of 4 disagreement between the

predictions, does not alter the conclusions we make regarding the experimental data.

In other words, our measured normalized relaxation rates vary by about 4.5 decades

as re/b is varied, and even with a factor of 4 error we are still observing a rapid
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decrease in the normalized relaxation rate as re/b is decrease below re/b ~ 1. But,

more importantly, the discrepancy between the recent calculations and our results

are within the estimated error of the temperature diagnostic.

For low temperatures we estimate that systematic errors in the measured

temperature may be as much as 30%. In addition, we believe that the measured

temperatures in this region are most likely too high. Since the normalized relaxation

rate is a rapidly increasing function of temperature (i.e. re/b for fixed magnetic field)

in the regime re/b ~ 1, a 30% reduction in the measured temperature is sufficient

to reconcile the recent calculations with our data in the region 0.02 ;S re/b ;S 0.2.
To measure the relaxation rate we modulate the plasma length essentially

sinusoidally. The amount of heating as a function of the modulation frequency is

measured. If the modulation is slow compared to the relaxation rate, the compression

is three-dimensional and reversible so there is no heating. If the modulation is

rapid compared to the relaxation rate, then the modulation is one-dimensional and

reversible, and again there is no heating. If the modulation frequency is neither slow

nor rapid compared to the relaxation rate, the compression is irreversible and the

plasma is heated. At all times the modulation frequency is low compared to the

bounce time and to the lowest plasma mode frequency. A model of this heating

process shows that maximum heating per cycle occurs when 271" f = 3v, where v is

the relaxation rate and f is the modulating frequency.

We observe the heating as a function of the modulating frequency. The

frequency, frnax, which produces the most heating per cycle is determined, and the

relaxation rate is then obtained from the relation 271" frnax = 3v. We have measured

the relaxation rate for three magnetic fields, 30, 40 and 60 kG, and for temperatures

from about 26 K to about 104 K. This gives a range in re/b of about 1/35 < re/b <

450.
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Figure 1.1: The diamond points, 0, are our experimentally measured relax-
ation rates normalized by n b2 VT, and plotted versus r c/ b. The solid curve is the
O'Neil-Hjorth prediction. The dash curve is a Fokker-Planck prediction with the
coulomb interaction effectively cut off at a distance of re. The square clata points
are prior results obtained by Hyatt, Driscoll and Malmberg.
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A prior measurement of the relaxation rate for a pure electron plasma has

been made by Hyatt, Driscoll and Malmberg [26, 25]. They used a pure electron

plasma trap which is similar to the one we have used; however, their magnetic field

was much lower (281 G) and their plasma temperatures were around 104 K. This

places their experiment in the regime 3 x 104 ;S re/b ;S 106, with >'0 ~ 30 re. In their

experiment the parallel temperature, Til, was changed by a single axial compression

or expanSIOn. The subsequent time evolution of 111 and T1. was then measured

as these temperatures relaxed to an isotropic temperature. Relaxation rate as a

function of density and temperature were measured over a two decade range, with

uncertainties in the measured rate of about 10%. Since they were in the regime

re/b ~ 1, they compared their results to an absolute (no adjustable parameters)

Fokker-Planck prediction using re instead of >'0 as the cutoff distance and found

absolute agreement to about 10%.

Their results clearly demonstrate the n/T3
/
2 dependence of the relaxation

rate. However, since they are in the regime rclb ~ 1, an order of magnitude change

in re/b has only about a 20% change in log(re/b). This, combined with the fact that

their data has errors of about 10% and the Fokker-Planck theory has an uncertainty

of about 10%, means that their data is not suited to test the log(re/b) dependence of

the predicted relaxation rate. Second, their data was taken at a single magnetic field,

so that they are unable to give conclusive data showing that re is the proper cutoff

instead of ).0. This is again due to the fact that the predicted coulomb logarithm

term is a very slow function of its argument.

There are additional experimental results of collisional velocity space trans-

port2• Hiskes and Futch [22] present measurements of the rate at which ions are

transported into the loss cone of a magnetic mirror for several devices, and find

2Here we essentially reproduce the conclusions of A. W. Hyatt on other collision velocit.y space
transport rate experiments (see pages 2 to 3 in reference [25]).
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that at best the agreement with collisional theory is about a factor-of-two. The

theoretical rates are generated by a Fokker-Planck code which requires the input of

initial conditions, and in some cases, there are free parameters which are adjusted

to bring the output of the code into agreement with some measured quantity. Burke

and Post [4] present the results of their experiments on fast test ions slowing in a

neutral plasma, and contrast these results with those of other similar experiments.

Their results differ from theory by a factor of 3 with uncertainties of order unity.

The other experimental results referred to by Burke and Post differ from theory by

factors of 1/3 to 8.

The resistivity measurements of Lin el al. [55]and Mohler [39] together agree

quite well with the theoretical predictions of Spitzer and Harm [58]over a reasonable

range of temperatures and densities, with experimental accuracies on the order of

10-20%. They measure the average conductivity in the shock wave front of a gas.'

This shock wave is produced in a shock tube. The average charge density and shock

wave temperature are calculated from the measured Mach number. Although a

resistivity measurement does not measure a scattering rate per se, it does measure

one of the bedrocks of collisional velocity space scattering in plasmas - the effective

cross-section for momentum transfer between charged particles in a plasma.

The remainder of this thesis is organized as follows. In Chapter 2, we present

the basic ideas and assumptions used to theoretically predict the relaxation rate. In

particular, we estimate for what regions of Telb one should expect the different the-

ories to be valid and then estimate their uncertainties when possible. Also included

in this chapter is an argument due to O'Neil [44] which shows that a many electron

adiabatic invariant exists in the regime Telb ~ 1. In Chapter 3, we explain how a

pure electron plasma can be confined by static magnetic and electric fields. \""Ie also

describe the design of the experiment and how it is typically operated. We end this
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chapter by explaining how we determine the plasma density and length.

We start Chapter 4 by showing that one expects the plasma to cool VIa

cyclotron radiation with an e-folding time of about 4 x 108B-2 sec. We then compare

the calculated temperature versus time to the measured temperature versus time.

Next we present possible ways to heat the plasma, one of which we use to measure the

relaxation rate. We then present the temperature measurement method. The plasma

temperature is determined by measuring the number of electrons which escape as the

potential on an axial confinement gate is slowly raised to ground. The temperature

is obtained by comparing the number of electrons that escape as a function of the

confining gate potential to a model which predicts how many electrons should escape

as a function of the confining gate potential. The assumptions built into this model

are presented in this chapter as well as why we believe these assumptions are satisfied

by the experiment. In Chapter 5, we present the compressional heating model and its

assumptions. Compressional heating data is then presented for two simple heating

schemes. This data is compared to the model's prediction. We also present our

experimental relaxation rate data and compare this data with theory. Finally, we

estimate the uncertainties in the measured relaxation rates.

In Appendix A.I we elaborate on the cyclotron radiation rate calculation pre-

sented in section 4.2. This calculation includes quantum effects (i.e. Landau levels)

and the effect of a background, thermal equilibrium, radiation field. In Appendix A.2

we show that for a Maxwellian distribution, (dE;j dt) = d(Ei) / dt = (kB/2)dT;j dt

when dE;! dt = C'Ei. Here Ei is the kinetic energy of an electron along an axis i,

the brackets means an average over the distribution, and 0' is a constant.

The model for the compression heating assumes that the plasma length is

modulated sinusoidally. This assumption combined with a few other assumptions

predicts that maximum heating per cycle will occur when 271" f = 3v. If harmonics are
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added to the sinusoidal modulation then maximum heating per cycle will no longer

occur when 27r f = 3v. In Appendix A.3 we estimate the size of the fundamental and

first harmonic modulations for a well confined plasma (one in which the potentials on

the confining gates are much greater than the plasma space charge potential) when a

confining gate is modulated sinusoidally. In Appendix AA the compressional heating

model is reanalyzed to determine which frequency produces maximum heating when

the first harmonic of the plasma length modulation is included. Combining the

results of this appendix with those of Appendix A.3, we conclude that the first

harmonic adds at most a 1% error to the measured relaxation rate.

O'Neil and Hjorth obtain a simple formula for the relaxation rate when

re/b ~ 1; however, this formula is an approximation, and there is no indication

of how small re/b must be before this simple formula is a good approximation to

the relaxation rate. In Appendix A.5 we show how this simple formula was calcu-

lated. In Appendix A.6 we estimate the rate at which one might expect three-body

collisions to relax the distribution of parallel velocities to a Maxwellian. For small

re/b the three-body collision rate may be larger than the relaxation rate; in which

case, the rate at which the parallel velocity distribution relaxes to a Maxwellian is

the three-body collision rate.

When a plasma expands radially the electrostatic potential energy of the

plasma decreases, and this can heat the plasma. In Appendix A.7 we calculate the

rate of change in the electrostatic potential energy for a plasma density which is

varying in time as n(r, t) = n(r/x(t))/x2(t). In Appendix A.S the experimental

relaxation rate data as well as other relevant parameters are presented. Finally, in

Appendix A.9 we present symbols which are frequently used in this thesis.



Chapter 2

Theory

2.1 Introduction

In this chapter we will present the basic ideas and assumptions used to cal-

culate the relaxation rate. In particular, we will focus on those theories that are

pertinent to the experimental data presented in this thesis. In the parameter range

re/b ~ 1 a Fokker-Planck [28] equation is used to calculate the relaxation rate. For

re/b ~ 1, a recent theory by O'Neil and Hjorth [48] which uses a Boltzmann-like

collision operator is used to calculate the relaxation rate. This latter theory predicts

a rapid decrease in the relaxation rate as re/b is decreased. For the region re/b ,....,1

all current theories become invalid. However, recently the relaxation rate has been

calculated numerically for the range 10-4 < re/b < 104 [19].

In the early days of plasma physics attempts were made to calculate velocity

space scattering using the Boltzmann equation. This was, in part, due to the numer-

ous relatively accurate calculations which had been made for molecular gases using

the Boltzmann equation. However, it was soon realized that the Boltzmann equation

is ill-suited to describe velocity space scattering of charged particles. This failure is

due to the fact that the force between charged particles falls off as 1/ r2
; in contrast to

molecular forces which fall off as l/r6 or l/r7• Hence, it is not appropriate to assume

that a collision between charged particles is an isolated two particles event (binary

11
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collision assumption); an assumption which is valid for many molecular gases.

It is rather simple to show that unphysical results are obtained when one

naively treats collisions between charged particles as isolated events. For example,

the electron-electron cross section for momentum transfer is (see section 1.2 in ref-

erence [27])

where bll = 4e2/(mu6), Uo is the relative velocity between two electrons when they

are separated by an infinite distance, Pmax is the maximum impact parameter and

Pmax ~ bll. Obviously, Pmax must be finite or Qm, which is known to be finite, would

be infinite. The binary collision assumption alone does not limit the value of Pmax.

Also, when Pmax ~ nl/3 the binary collision assumption is clearly invalid.

More elaborate theories of velocity space scattering have since been devel-

oped. These theories include correlation effects to lowest order in the plasma pa-

rameter, g = 1/(nAb), and predict an effective cutoff of the coulomb interaction at

a distances of about the Debye length (i.e. Pmax '" AD).

When a plasma is immersed in a magnetic field the cutoff distance is still be-

lieved to be AD as long as rc ~ AD ~ b. However, when AD ~ rc ~ b, Montgomery,

Joyce and Turner argue that the coulomb cutoff distance is about rc• To understand

the physics of this cutoff distance, consider a collision between two electrons, electron

1 and electron 2. Let u = VI - V2 be the relative velocity between electron 1 and

electron 2, and let ull be the component of u parallel to the magnetic field. Now

consider the case n ~ ulil P where n is the electron gyrofrequency. (For electrons

with thermal velocities, the condition n ~ ulII P is equivalent to P ~ r c.)

During the collision, electron 2 will produce a time varying field felt by elec-

tron 1 which has two essential time scales. One time scale is about plull and is much

slower than the gyromotion. If this were the only time varying field felt by electron 1

."

.,
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during the collision, then the magnetic moment of electron 1 would be an adiabatic

invariant. However, the gyromotion of electron 2 introduces a second time scale with

frequency n to the interaction field felt by electron 1, and this breaks the adiabatic

invariant of electron 1. Likewise the invariant of electron 2 is broken by the time

varying field produce by the gyromotion of electron 1. Although separately neither

magnetic moment is an adiabatic invariant, O'Neil [44] has shown that the sum of

the two magnetic moments is an adiabatic invariant. For a uniform magnetic field,

this simply states that the total perpendicular kinetic energy of the two electrons

is an adiabatic invariant. As a consequence of this two electron adiabatic invariant

there is essentially no scattering of perpendicular energy into parallel energy or vise

versa for collisions where n ~ ulI/P' Therefore, one concludes that collisions with

n ~ ull/P contribute a negligible amount to the relaxation rate, and for a Maxwellian

plasma this is essentially collisions with P ~ rc, so that the coulomb cutoff distance

is about rc.

When rc ~ b many collisions have an impact distance which is much less

than rc• For these collisions the gyromotion can be ignored when calculating the

velocity space scattering, so that a Fokker-Planck formalism is expected to be valid

as long as the coulomb interaction is cut off at a distance of about r c.

On the other hand, when r c ~ b there will be an exponentially small number

of collisions with an impact distance less than a gyroradius. Basically, the relative

velocity of two electrons must be such that mu~/2 ;:::e2/rc, which can be written in

terms of the thermal velocity,vT, as ull ;:::vT(b/rc)1/2. For a Maxwellian distribution

there are an exponentially small number of collision such that ull ~ VT(b/ r c) 1/2. In

addition, there are only an exponentially small number of collisions in which the

rearrangement of VIIand V.l is not constrained by the previously described adiabatic

invariant (for rc ~ b most collision satisfy vlI/P ~ n). The result of all these expo-
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nentially small quantities (of course, the adiabatic invariant predicts an exponentially

small rearrangement of vII and Vl. per collision), is an exponentially small relaxation

rate when re ~ b.

This chapter is arranged as follows. In section 2.2 we give a short overview

of the history of velocity space scattering~ In particular, we present the assumptions

used in the different velocity space scattering theories. We will not derive any of the

formulas here; these derivations can be found in the references. In section 2.3 we

present the actual formulas that will be compared in section 5.4 to the experimental

results. We will make some attempt at determining the validity of such comparisons.

Section 2.3.1 contains the formula for re/b ~ 1 and section 2.3.2 contains the formula

for re/b ~ 1. Finally, in section 2.4 we reproduce an argument by O'Neil [44] which

shows a many electron adiabatic invariant exist in the regime r e/ b ~ 1.

2.2 Historical Review of Velocity Space Scatter-
•lng

The Boltzmann equation [3, 42], describes the evolution of the one-particle

distribution function, f = f(x, v, t) for a gas when the interaction range is much

smaller than the mean interparticle spacing, n-1/3 (i.e. binary collisions). For a gas

composed of like-particles (i.e. a single species) the Boltzmann equation is

(2.1 )

where F is the external force. The right-hand side gives the evolution of the one-

particle distribution function due to the discrete nature of the gas and is called the

collision term.

Consider a binary elastic collision, and write the velocities before the collision

as v and Vb and the velocities after the collision as v' and v~. Then, for the

•.
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Boltzmann equation the collision term is

~~ Ie = n J dVI J dD :~ {f(x, v~)f(x, V') - f(x, vdf(x, V) } IVI - vi (2.2)

where dO"/ dD is the differential scattering cross section and dD is an element of

solid angle. Note that a collision transforms the unprimed velocities into the prime

velocities so that v' = v/(v, VI)' A similar expression holds for v~. The term

containing f(x, VI)J(X, v) is the rate at which particles scatter out of the range V

to v + dv, and the term containing f(x/, vDf(x/, v') is the rate at which collisions

scatter particles into this range. In thermal equilibrium these two terms are equal

and the collision term vanishes; otherwise, there is a net flux of particles either into

or out of the range v to v + dv.

The Boltzmann equation has been verified experimentally for cases where

the interaction range is much less than n-I/3 and spatial and temporal gradients are

not too great [5]. In other words, the Boltzmann equation works well for a sparse

neutral gas.

Attempts have been made to adapt the Boltzmann equation to plasma and

stellar dynamics. This leads to a problem since the Boltzmann equation was derived

for particles with short range interactions, and it is, therefore, assumed that only two

particles are interacting at anyone time. The coulomb and gravitation interactions,

on the other hand, are infinite range and many particles, in general, are interacting

at anyone time (e.g. the number of electrons within the effective interaction range

of a given electron is roughly 1/9 = nAb).

A second approach to calculating the evolution of the one-particle distribu-

tion function is to use the Fokker-Planck equation [17, 51]. This equation is the same

as the Boltzmann equation except for the collision term. In this formalism a parti-

cle is assumed to make small random walks in phase-space (often called Brownian

motion) in a time 67. The time 67 is taken to be much shorter than the time it
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takes the distribution function to relax to a local equilibrium and much longer than

a typical correlation time (e.g. w;l for a plasma).

In the Fokker-Planck derivation, one assumes that a function \II (v, ~v) can

be calculated which gives the probability that a particle with velocity v acquires a

velocity increment ~v during a time interval ~T. One also assumes that \II does

not depend explicitly on time (this is known as a Markoff process). Given \II (and

assuming here that the gas is uniform in x, that is, the x coordinate will be ignored),

the distribution will evolve as

f(v, t) = J f(v - ~v, t - ~t)\II(v, ~v) d(~v).

The collision term is then

afl ~ f(v,t)-f(v,t-~t)
at ~tc

Taylor expanding this equation one obtains

afl ~ _~. (f(~v)) +!~: (f(~V~V))at av ~T 2 avav ~T
c

where

(~v) = J ~v\Il(v, ~v) d(~v)

and

(~v~v) = J ~v~v\Il(v, ~v) d(~v).

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

Here ~ v is assumed to be small and terms of order ~ v~ v~ V and greater are ignored.

Note that in order to neglect terms of order ~v~v~v and greater, ~T must be short

enough so that most particles incur only a small velocity increment.

The term containing a single ~ v is called the dynamical friction term and

tends to bring all particles to a common velocity. The term containing ~v~v is

called the diffusion term and tends to diffuse the particles in velocity space. In the

...



17

absence of external driving forces, these two terms will relax the distribution function

to a Maxwellian.

For small impact distances, of order b or less, b.v can be shown to be large.

Since the Fokker-Planck equation is derived for small b.v it will not be valid for

impact distances of order b or less. This leads to a problem if the main contribution

to velocity scattering occurs at small impact distances. It has been shown [6] for

l/r2 forces that if Pmax ~ b (Pmax being the cutoff distance) then the range b ~oPmax

contributes much more to velocity space scattering then does the range 0 to b.

One problem with the Fokker-Planck equation is that it does not explicitly

present a method for calculating (b.v) and (b.vb.v). That is, one must still deter-

mine the transition probability function W. One method of calculating (b.v) and

(b.vb.v) [18] assumes that changes in velocity, b.v, can be calculated using the two

particle scattering cross section. This method has been employed by Rosenbluth,

MacDonald and Judd [54]. Their results can be shown to be equivalent to expanding

the Boltzmann collision operator for small b.v (see pages 15-20 in reference [42]).

Since the Boltzmann equation is not obviously valid for impact distances greater than

n-1/3, one may question the validity of this approach in the regime pmax > n-1/3.

However, if one estimates the change in an electron's velocity as it traverses a dis-

tance Pmax, one can show for a thermal electron that this change is small provided

Pmax ~ b. In this estimate the rare large angle scattering collisions are ignored (i.e.

collisions with impact parameters of order b or less), and each collision, although oc-

curring simultaneously, is treated as a binary collision. Each binary collision ca.uses

a change in the electron's velocity a.s it traverses a distance Pmax, and these changes

are statistically summed to obtain the total change in the electron's velocity.

The fact that a particle's trajectory is hardly perturbed by all its surrounding

neighbors as it traverses a distance Pmax means that to a good approximation the
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interaction between any two particles may be treated as if it occurs in isolation. This

implies that both the Boltzmann formalism and the Fokker-Planck formalism should

be a valid approach to calculating the relaxation rate as long as Pmax » b.

It is worth noting that re ~ n-1/3 for the plasmas studied in this thesis.

This implies that the Fokker-Planck formalism of Rosenbluth, MacDonald and Judd

should be valid for the plasmas studied in this thesis as long as r e » b. It also

implies that a Boltzmann formalism should be valid for all re/b as long as the plasma

is uncorrelated.

A second method of calculating (~v) and (~v~v)was employed by Thomp-

son and Hubbard [59]. They calculate (~v) and (~v~v) by calculating the fiuc-

tuating electric microfields produced by a weakly correlated plasma. Their results

include plasma shielding to lowest order in the plasma parameter, g, and thus provide

a natural cutoff of the coulomb interaction at a distance of about ,\D.

The Fokker-Planck equation calculated by Thompson and Hubbard is essen-

tially equivalent to the Lenard-Balescu equation [33, 2]. In this latter formalism,

a plasma is consider to be weakly correlated, and again only correlation effects to

order g are retained. The Lenard-Balescu collision term can be written as

BII =Bt e

~~~.~Jdv'~. [(~-~)f(V)f(V')]
n ~ k2 Bv k2 Bv Bv'

8(k. v - k . v')x------
IE(k, k. V)12

(2.8)

where E(k, w) is the plasma dielectric function, and is given by

w
2 J ( 1 ) BE(k, w) = 1+ if dv w _ k. v k. Bvf(v). (2.9)

Finally, O'Neil [44] considered a strongly magnetized plasma (i.e. re/b ~ 1,

which essentially guarantees that the gyromotion will have the fastest time scale)

..•.
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and derived a Boltzmann-like1 collision term as

of of A of-+v. --Ov xz.-
ot ox OV n J dVl J dO :~ {f(x, v~)f(x, v')

- f(x, v1)f(x, v) }Ivlh - vIII (2.10)

This collision term is derived assuming that the plasma is spatially homogeneous (i.e.

f(x, v, t) = f(v, t)), that the main contribution to perpendicular velocity scattering

occurs for impact distances of order b or less, and that b ~ n-1/3 (i.e. uncorrelated

plasma).

2.3 Validity of a Comparison Between Theory
and Experimental Data

Simple arguments show that the relaxation rate should be proportional t02

n b2 VT. This has a simple analogy to collisions between hard spheres if one interprets

b2 as the total cross section. We therefore choose to write the relaxation rate as

2 -
v = nb VT I(re/b) (2.11)

In this section we present the predicted relaxation rates that are plotted in

section 5.4. Here we assume that 1 is a function only of re/b in the regime AD > re,

9 ~ 1. This is predicted by theory for re/b ~ 1 and for re/b ~ 1. We will assume

that it is also true for the region re/b rv 1, which seems reasonable. This implies

that a plot of v / (n b2 VT) versus re/ b should lie on a single curve for all temperatures,

magnetic fields, and densities (see Fig. 5.8).

lO'Neil has called this equation Boltzmann-like since it is essentially the Boltzmann collision
term except that the charged particles basically follow the magnetic field lines during a collision.

2For the regime re/b «: 1 this is not so obvious, and one might guess that the relaxation rate is
proportional to nbS r~vT where s + t = 2 instead of nb2vT.
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2.3.1 Theory For re/b ~ 1

For the region re/b ~ 1 we use an I as calculated from a Fokker-Planck

equation (see Eq. 76 in reference [28] or page 33 in reference [7]) which gives

- 8j1r
I(re/b) = 15 log(re/b)

Here we have substituted log(re/b) for 10g(AD/b)as per the Montgomery, Joyce and

Turner [41, 40] approximation. That is, the coulomb cutoff distance, Pmax, is re, and

This predicted relaxation rate breaks down as re/b approaches 1 for two

reasons. First, the calculated relaxation rate involves integrals that contain re and Ve

where re and Ve are the exact orbits traced by the particles during a collision .. When a

plasma is immersed in a magnetic field these integrals are too complicated to calculate

analytically. To simplify the integrals one ignores the particle interaction when

calculating reL and VeL (i.e. the particle interactions are assume to make negligible

changes to re and Ve during a collision). This is sometimes called unperturbed or

noninteracting orbit assumption. Such an approximation is valid only for collisions

in which either P ~ b (i.e. small .6.v) or n ~ ull/P (i.e. the sum of the electrons'

magnetic moment is an adiabatic invariant). Using the argument that the main

contribution to velocity space scattering occurs for P > b when Pmax ~ b and the

argument that Pmax I'V re, one concludes that the unperturbed orbit assumption

should be valid as long as re/b ~ 1.

Second, the Fokker-Planck equation was derived assuming .6.v is small so

that terms containing .6.v.6. v.6. v and higher orders of .6.v can be ignored. It can be

shown (see reference [54]) that terms containing .6.v.6. v.6. v and higher orders of .6.v

are about 1/10g(re/b) smaller than the terms containing .6.v and .6.v.6. v. In other

words, this calculation employs the dominant term approximation which neglects

terms that do not contain the coulomb logarithm factor, 10g(Pmax/b). Thus, the

9.
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uncertainty in this Fokker-Planck relaxation rate calculation is at least 1/ log (T' e/ b),
and this uncertainty becomes very large when T'e/b '" 1.

2.3.2 Theory For Tc/b ~ 1

Consider a binary collision between electrons that are immersed in a uniform

magnetic field. Assume that the magnetic field is strong in the sense that n ~
UOII / dmax where uOIl is the initial relative velocity parallel to the magnetic field, dmax

is the larger of p and bll' and bll = 4e2/(muoll). In this case, O'Neil argues that the

sum of the perpendicular energy of the two electrons, 3.1, is an adiabatic invariant.

Thus, the collision is expected to cause an exponentially small change to 3.1, and

using unperturbed orbits, O'Neil and Hjorth calculate this change to be3

(2.13)

where 0 corresponds to the phase angle between VIol and V2ol' ( = z/bll, 1] = p/bll'

e = uollt/bll and ",' = nbll/uoll. From conservation of energy and letting 63.1 = 0,

the normalized relative parallel velocity, B(/Be, must satisfy the equation

(2.14)

Since ",' ~ 1 (i.e. n ~ uoll/bll) the integral in Eq. 2.13 involves the product

of a rapidly oscillating function and a slowly varying function4• Consequently, this

integral can be shown to be of the form

(2.15)

where 9(1]) is an increasing function of 1] with 9(0) = 7r/2, and 12(",',1]) is neither

exponentially small nor exponentially large as long as ",' ~ 1 or ",'1] ~ 1.

3All the equations in this section are derived in reference [48].
4This is also true when /C' 1P 1, as long as /C'T! = r2p/uoll ~ 1.
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Figure 2.1: Guiding center and gyroangle coordinates for a single electron.
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For 're/b ~ 1, O'Neil and Hjorth calculate J('re/b) using Eq. 2.13 for 63.1..

and the Boltzmann-like equation, Eq. 2.10, and obtain

(2.16)

where Ii = V2Db/VTII, VTII= JkB1'II/m, VT.L = JkB1'.1../m, U = UII/(V2vTII) and kB

is the Boltzmann constant. This derivation also assumes that 111 ::: 1'.1.. at all times.

(For the experimental data present in this thesis 111 ::: 1'.1.., so that VTII::: VT.L' In this

case Ii ~ V2b/'re.)

When 're/b ~ 1, O'Neil and Hjorth argue that the main contribution to the

relaxation rate comes from collisions with small impact distances (i.e. small TJ), and

(2.17)

(2.18)

With these approximations J becomes

(2.19)

This equation has a simple interpretation. The factor exp( _u2 /2) is just

the Maxwellian distribution in ull which dies off quickly for large u. The factor

exp( -1rIi/(3) dies off quickly at low relative velocities, and implies that only high

relative velocity collisions contribute significantly to velocity space scatter. These two

terms produce a peak in the integrand near u5 = 31r1i. Using a saddle point method

toevaluateEq. 2.19, one finds that therangevT((31r1i)1/5-1) < ull < 'VT((37rK)1/5+1)

contributes the most to velocity space scattering (see AppendixA.5).

A saddle point evaluation of Eq. 2.19 yields

(2.20)
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We have numerically integrated Eq. 2.19 for various values of re/b, and find that

Eq. 2.20 is a good approximation to Eq. 2.19 as long as re/b ;S 1. Note that these
equations are not valid unless rclb ~ 1. When comparing theory to the experimental

data, we will use Eq. 2.20 for l(re/b) in the region re/b < 1.

2.4 Many Electron Adiabatic Invariant

In this section we will essentially reproduce an argument by O'Neil [44]which

shows that when re/b ~ 1, there is a many electron adiabatic invariant which pre-

vents the energy exchange of parallel and perpendicular velocity components. This

is a novel invariant since it involves many electrons. First, consider the canonical

coordinates and momenta [57] (z, Pz, Y, mnx, 'l/J,p1j;) of each electron where

Vx
tan('l/J)= --

Vy
(2.21)

(2.22)

VyX=x- -,n (2.23)

Here 'l/Jis the gyroangle and P1j; is its conjugate momentum, (X, Y) are the guiding

center coordinates, and Py = mnx is the momentum conjugate to Y. Figure 2.1

shows what these coordinates would look like for a single electron.

The Hamiltonian for N electrons is given by

(2.24)

where

(Xi + Pi cos('l/Ji) - Xj - pjcoS('l/Jj))2 +

( Yi + Pi sin( 'l/Ji) - Yj - Pj sin( 'l/Jj) )2 +

.•
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The quantity p = (2pljJ/(mn))1/2 is the gyroradius for an electron with perpendicular

energy p""n.

The inequality n ~ (V1./b, vII/b) implies that the 'l/J/s are rapidly varying

compared to the other variables. Next, a transformation to a new set of variables is

made such that only one of the variables is rapidly varying. The transformation takes

{('l/Jj,p""JI j = 1, ... , N} into {(OJ,poJI j = 1, ... ,N} via the generating function

(see chapter 9 in reference [20]),

N

F2 = POI 'l/J1+ 'L Poj ('l/Jj - 'l/J1)
j=2

(2.25)

and leaves the variables (Zj, PZj' Yj, mnYj) unchanged. The new variables are related

to the old by

for j > 1, (2.26)

for j > 1. (2.27)

(2.28)

From these equations it follows that POI = L:~1 P""j so that the Hamiltonian takes

the form
N p2 e2

H=npOI + 'L~+'L--
j=1 _m i<j Iri - rjl

From this Hamiltonian, one sees that 01 is the only rapidly varying variable. Thus,

(2.29)

is the desired adiabatic invariant.

For a uniform magnetic field, this adiabatic invariant is the total perpen-

dicular kinetic energy of the electrons. To the degree that this adiabatic invariant

is conserved there is no exchange of energy between the parallel and perpendicular

velocity components.



Chapter 3

Experiment Apparatus and
Measurement Methods

3.1 Introduction

This chapter describes the design of the experimental apparatus, how a

plasma is produced, and the density and length measurements. The apparatus de-

scribed here is unique in the world although similar to other pure electron plasma

traps which have been employed by Malmberg el al. [53]. This particular pure elec-

tron trap has been given the name ev which stands for Qryogenic plasma, Yoltage

contained. A more exact name for ev would be eVM where the "M" stands for

M.agnetic contained, since ev uses both magnetic and electric fields to trap the

electrons. However, we will stick with the name ev.

A schematic of the ev trap is shown in Fig. 3.1. This simple drawing is all

one needs for a quantitative understanding of the data in this thesis. In Fig. 3.1

there are three conducting cylinders, called gates. Each gate is electrically isolated

from the other gates, and all the gates are aligned along a common axis, designated

the z-axis. These gates are called G6, G7, and Gg• Also aligned with the cylinders

are an electron source and five collecting rings, R1, R2, R3, R4 and Rs. Finally, a

uniform magnetic field is aligned along the z-axis. The magnetic field provides radial

confinemen t.

26
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Figlll"C 3.1: SdWllliltiC of CV pure dedwil plasmil trap. Tlie magnetic field is aligned with the z-axis. The shaded
(tJ'(;a reprcsent.s a trapped plasillil whcll (il; and G13 are at. - V and G7 is grounded.
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Note that the plasmas described in this thesis are pure electron plasmas.

There are no ions1 and the background neutral pressure is assumed to be ignorable

for times less than about 1000sec. This implies that the plasma can be cooled to

very low temperatures (much less than 1eV) without recombination.

In section 3.2 we explain how a pure electron plasma can be confined for long

times by static magnetic and electric fields. The electric field provides confinement

along the magnetic field, axially, by creating a potential energy well. The electric field

produced by the plasma together with the external magnetic field produces a field

angular momentum along the z axis (see page 604 in reference [29]). This angular

momentum is much larger than the plasma mechanical angular momentum for a

typical plasma in CV. The field angular momentum is proportional to Lj(R~ - rJ)

where the sum is over all the electrons, rj is the radial position of the jill. electron and

Rw is the radius of the cylindrical gates. If yxternal torques are small a plasma in CV

can be confined for a long time due to the constraint on the allowed radial position of

the electrons (i.e. Lj r; ~ const). Plasmas used to acquire the relaxation rate data

had lifetimes, 'TIifetirne, much greater than 100sec where Tlifetirne == n (dn(r = O)/dt)-l.

In section 3.3 several adiabatic invariants are introduced which will be used

in different sections of this thesis. In section 3.4 an overview of the basic experimen-

tal apparatus is presented. The actual electron source, conducting gates and end

collectors are presented as well as the approximate magnetic field strength versus

axial position. The magnetic field at the electron source is about 20 times smaller

than the magnetic field where the plasma is ultimately contained. This is done to

protect the electron source which can not be operated in large magnetic fields. In

sections 3.4 and 3.5 we explain what it takes to produce a stable, repeatable plasma.

The apparatus is operated in an inject, hold, dump and measure cycle (hence-

1Axially, only negative charges are trapped. In fact, positive charges see a potential energy hill
which accelerates them out of the trap region.

.•
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forth this cycle will be called a shot). During the dump and measurement phase the

potential on Gs is raised to ground, causing the confined electrons to stream along

the magnetic field to the end collectors. Depending on the rate at which the poten-

tial on Gs is raised to ground, information about either the plasma density profile

or the plasma temperature obtained. However, only one of these measurements can

be made per shot. Fortunately, with the proper apparatus setup the shot to shot

repeatability of both the number of electrons collected on the end collectors and the

plasma temperature can be greater than 97%.

In section 3.6 we first describe some of the properties of a global thermal

equilibrium plasma, then compare this to what is presently known about a CV

plasma. Finally, we discuss particle transport times for a CV plasma.

In section 3.7 the density and length measurements are presented. In this

section we show that the average density, (n), seen by an electron as it traverses

axially will depend on the electron's radial position (i.e. d(n) / dr =1= 0). Also depen-

dent on the radial position of an electron is an electron's axial bounce length, the

axial distance between an electron's axial reflection points. Furthermore, at high

temperature and for the same radial position, an electron's axial bounce length will

depend significantly upon the electron's axial velocity, vII' The radial variation of

the average axial density combined with an unknown radial energy transport time

contribute the largest uncertainty to the measured relaxation rate.

3.2 Electric and Magnetic Confinement of a Pure
Electron Plasma

In this section we will explain how a pure electron plasma can be confined

with static electric and magnetic fields.
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CV Othersa
magnetic field 10 - 60 0.05 - 0.5(kG)
plasma length 0.5 - 10.0 4 - 40(cm)
plasma radius 0.1 1- 2.5(cm)
plasma density 107 _ 1010 106 _ 107

(e/cm3)

plasma lifetime 102 - 104+ 1 - 2 X 103
TJifetime (sec)

plasma temperature
(Kelvin) 30 - 2,000,000 5,000 - 80,000
(eV) 0.003 - 200 0.5 - 8

Table 3.1: Comparison between CV plasmas and other pure electron plasmas stud-
ied by Malmberg et al.

aOther pure electron plasmas studied by Malmberg et al.

3.2.1 Magnetic Field and Radial Confinement

It is the axial magnetic field together with very small external torques that

provide the long radial confinement times for a pure electron plasma in the CV

trap [45]. To understand how the magnetic field confines the plasma, one must

consider the total angular momentum of the system, Po, which has two parts, the

mechanical angular momentum of the electrons and the field angular momentum,

Po = L:mvojrj + JdVrO. (E x B)/(41rc).
J

(3.1 )

Here we have taken Vj « C (the speed of light), the sum is over all particles and

dV = r dr dBdz. To calculate the field angular momentum term let the potential

on G6 and Gs be - V and the potential on G7 be ground. To simplify the problem

we will consider the case where the lengths of G6 and Gs are much longer than the

radius of the gates. For the magnetic field we write B = Bi where B is a constant.

Also, we will ignore the diamagnetic field produced by the electrons since the electron

velocities are small compared with the speed of light and since the density is well
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below the Brillouin limit2• We then obtain fJ. (E x B) = -ErB = Borp/or, so that

J ~ J orpdVr e. (E x B) = B dVr or.

After some manipulation and using Green's theorem we find that

1 J ~ B ( 2 "" ""2)- dV r e . (E x B) = - - Rw LJ qj - LJ qj r j .
41rC 2c..

J J

(3.2)

(3.3)

We next assume that no electrons hit the gate walls3 (i.e. rj < Rw), that the

mechanical angular momentum term is ignorable and let qj = -e. To the extent

that the plasma angular momentum is conserved, the allowed radial positions of the

electrons is constrained by the relation L:j r] = const. Of course, the plasma angular

momentum is conserved by electrostatic interactions between the electrons. The only

way to change L:j r] is to apply external torques to the plasma.

Sources of external torques include neutral particles, external fields with e
components, finite wall resistance, and ele~tromagnetic coupling between the plasma

and the external world. For this reason the plasma is contained in a high vacuum

and all external fields seen by the plasma are designed to be independent of e (e.g.

cylindrical gates). Of course, it is impossible to make the field completely indepen-

dent of e or to have a perfect vacuum. However, to measure the relaxation rate we

only require that the density profile remain essentially the same for about 20 sec,

which is the case for the plasmas studied in this thesis (it takes about 1000 sec for

the central density to drop a factor of two).

For a typical CV plasma it is easy to show that the mechanical angular

momentum term is much smaller than eB I (2c) L:j r]. Let VII be decomposed into

two parts. One part is the gyrocenter drift velocity, Vf (see section 3.3), which for

a zero temperature plasma is VE = cE x BI B2. For a constant density plasma

2For a uniform density pure electron plasma, the density must satisfy the relation 1.c :S )..0/ j2
(see reference [38] and references therein).

3This first assumption is not necessary, but it simplifies the following explanation.
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VE = r w;/(2n) so that Lj 2rjVf,j/(n Lj rJ) ~ (wp/n)2. For the plasmas studied in

this thesis, (wp/n)max ~ 0.003. The second part is the e component of the electron's

gyrovelocity, Ve, about the gyrocenter. One can overestimate this term by letting

Ve equal the thermal velocity VT. Thus, Lj 2rjVT,j/(n Lj rJ) ~ re/ (rp), where re is

the electron gyroradius and (rp) is essentially the average plasma radius. For CV

(rp) ~ 0.04cm so that (re/ (rp))max ~ 0.01. Thus, the field angular momentum term

is much larger than the mechanical angular momentum term for the plasma in CV.

Note that for a neutral plasma the field angular momentum will not constrain

the plasma radially. This can be seen from Eq. 3.3. Consider two charges at a radius r

with charge e and -e. These two charges can wander together in r without changing

the field angular momentum.

3.2.2 Electric Field and Axial Confinement

Electrostatic potentials are used to confine the plasma axially by creating, for

electrons, a potential energy well along the z-axis. This well is created, for example,

by applying negative potentials to gates G6 and Gs with G7 at ground (see Fig. 3.1).

The actual potential, cP, seen by the electrons is the sum of the potentials from

the gates (called vacuum potential) and the potential from the confined electrons

(called space charge potential). The total potential can be calculated from Poisson's

equation,

V2cP(r, z) = 47l'e n(r, z), (:3.4 )

where n( r, z) is the electron density, and cPmust satisfy the appropriate boundary

condition, which for CV is to good approximate the potentials applied to the gates

and end collectors. Also, we assume that the plasma and fields are independent of

(). To confine the plasma axially one requires that -e(Vb - cPo) ~ kaT where Vb is

the maximum potential along the axis and cPois the total potential at the center of

the plasma. Note, because of the finite length of the gates, the potential Vb is less
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than the potential applied to the confining gates.

3.3 Adiabatic Invariants

Before discussing the operation of CV and the plasma measurements, it is

useful to present three important adiabatic invariants and the guiding center drift

approximation.

If a system has a periodic motion, the action integral, f pdq, taken over

a period is a constant of the motion where q is a generalized coordinate and p is

its conjugate canonical momentum. If the system changes slowly compared to the

periodicity of the q motion then to good approximation the action integral is a

constant, and in standard nomenclature is called an adiabatic invariant [20, 43].

One good adiabatic invariant for the plasmas studied in this thesis is an

electron's gyromotion, which has an angular frequency n = eB/(me) ~ 1.76 x

107 Brad/sec. With the exception of close collisions (which can cause the interaction

fields to vary on time scales that are short compared to n-1), all fields seen by the

electrons vary on time scales which are long compared to n-1. In fact, at low

temperature even the collision time becomes slow compared to n-1, thus reducing

the exchange of energy between the parallel and perpendicular motion which is one

of the main themes of this thesis.

Integrating f pdq for an electron's gyromotion yields

mVI E.L
f.l ex 2B = B' (3.5)

as the adiabatic invariant where f.l is usually called the magnetic moment of the

electron. For uniform B one sees that E.L is then an adiabatic invariant. It has been

pointed out by O'Neil [44] that when T'e/b <t:: 1, which occurs for some of the plasmas

described in this thesis, it is not the magnetic moment of a single electron that is

conserved but the sum of all the magnetic moments (see section 2.4).
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Another useful approximation is to ignore the gyromotion of the electrons.

To lowest order in this approximation, called the guiding center drift theory, an

electron's motion perpendicular to the applied magnetic field is given by [43]

drg _ ( ) _ -c (F x B)
dt - Yf rg - e B2 ' (3.6)

where rg is the center of the electron's gyromotion and an electron at rg will feel a

static force F. Usually, Yf is called the drift velocity.

Let us calculate the motion perpendicular to an applied magnetic field for

an electron embedded in an infinitely long column of charged fluid. Let the charged

fluid have a charge density -en(r). The axis of the charged fluid column is aligned

with the magnetic field. This charged fluid is essentially equivalent to a plasma in

CV with density n( r). Here we assume that the guiding center drift theory is valid,

and for the moment we assume that the plasma temperature is zero. The motion of

an electron's gyrocenter is given by YE, where the force on the electron is due to the

electric field from all the other electrons. By Gauss' law this field is

() -47re lTg
(') , d ' AE rg = -- n r r r r,

rg 0

which yields
-47rec lTg

A

YE(rg) = B n(r') r' dr' 0.
rg 0

Thus, electrons circle the point r = 0 with angular frequency,

(3.7)

(3.8)

(:3.9)() 47rec rg
(')' ,

WErg = --2 Jo n r r dr.Brg 0

Note, for uniform density profile wE(rg) is also uniform, and for all other density

profile WE( r g) is a function of r g'

For finite plasma temperature, the angular rotation rate for an electron about

the radial axis is [47]

( )
c 8(nkBT)

wRr =WE+ B !:lr en ur
(3.10)
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The second term on the right hand side of Eq. 3.10 is a result of the diamagnetic (or

the pressure) drift.

When WR is fast compared to changes in the magnetic field we have another

adiabatic invariant, Zg. This adiabatic invariant is the flux enclosed by an electron's

guiding center drift motion,

(3.11)

This invariant is useful when determining the plasma density (see section 3.7).

We should also point out at this time what we mean by v1.. An actual

electron's velocity perpendicular to the magnetic field can be essentially written as

VJ. = VR + Op (3.12)

where p is the position of the electron about its guiding center in the absence of

other electrons. Since the plasma and all the fields are assumed to be symmetrical

in () and 0 ~ WR, we drop the VR, and write v1. = Op. Thus, when we write the

distribution function as f(vlI' vJ.) we are using this approximation for VJ..

The final adiabatic invariant is usually called the bounce invariant. In this

case q is the z coordinate of an electron and p is the momentum along z, mVII'

To calculate f pdq, we will assume that the potential is constant along z inside

the plasma except for a small region of z, where the electrons are reflected. This

assumption is good at low temperatures (see section 3.7.1). Thus, f mVII dz = 2mlpvlI'

If the potentials on the end gates confining the plasma are changed slowly compared

to vlI/lp then Ipvll will be an adiabatic invariant.

3.4 Experimental Apparatus

When looking at the CV experimental apparatus one sees two distinct ob-

jects; the electronics that control the experiment, and a liquid helium dewar and
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its support. The electronic part consist of units for timing events and producing

voltages on the different gates, power supplies for the magnetic field, oscilloscopes,

function generators and several specialized units. There is also a computer, a DEC

LSI 11/73, which is usually used for acquiring data. Although, at times the computer

is also used for controlling parts of the experiment. Presently, the main function of

the computer is acquiring temperature data and analyzing it if the temperature is

high, or transferring the data via a serial port to a VAX where low temperatures are'

analyzed.

The liquid helium dewar contains a superconducting solenoidal magnet and

its support, a vacuum can residing in the magnet bore, leads, and an amplifier

that operates at about 100 K. Inside the vacuum can are the cylindrical gates, end

collectors, and an electron source4. Figure 3.2 shows a schematic of the helium dewar

and its contents.

The liquid helium serves three essential functions, all related to its low tem-

perature of 4.2 K. First, it cools the magnet below the temperature at which the

magnet becomes superconducting. This allows for a large (up to 72 kG) steady mag-

netic field. This large field provides radial confinement and cyclotron cooling of the

plasma (see section 4.2). Second, it cools the walls of the vacuum can, causing the

inside walls of the vacuum can to act as a cryopump. This produces an ultrahigh

vacuum, possibly 10-13 Torr or less, inside the vacuum can. Finally, cyclotron cool-

ing can at most cool the plasma to the background radiation temperature. Since

the background radiation temperature is essentially determined by the apparatus

temperatureS, we want the apparatus temperature to be as low as reasonably possi-

ble.
4For the rest of this section we will call the cylindrical gates, end collectors, and electron source

by the name "trap".
5The plasma and the heated spiral filament (electron sour<;e) are additional sources of radia-

tion; however, the radiation from these sources appears to have no effect on the measured plasma
temperature.
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Figure 3.3 shows the actual arrangement of the trap in the vacuum can. The

electron source is a 0.006 cm diameter 1% thoriated tungsten wire. Initially the wire

was wound in a 0.5 cm diameter spiral. However, the original shape of the wire has

since been distorted. To produce electrons a current of about 0.5amps is run through

the wire causing it to heat to about 1800K. At this temperature some electrons are

able to overcome the work function of the metal and escape [30].

The number of electrons trapped is mainly determined by three potentials,

Vfil, Vbias and Vgrid [35, 14] and by the length of the initial trapping region. Vfil is

the potential difference between the center of the spiral filament and the outer edge

of the filament. Vbias is the potential applied to the center of the spiral filament. In

most cases Vbias is a negative potential. Vgrid is the potential applied to the gate Go,

which is situated directly in front of the filament. Henceforth, the spiral filament

will be called the electron source.

The gates and end collectors are machined from OFHC copper, and are

designed so that there is as little asymmetry in the () direction as possible. This is

done to reduce external torques. All the gates and end collectors are electroplated

with palladium and then electroplated with gold. The palladium is used to stop

the gold from diffusing into the copper. The gold forms an outer surface which

is conducting yet does not oxidize. The original design of CV had pure copper

gates. When Malmberg and Hyatt [37] initially operated CV they noticed that the

lifetime of a plasma in CV was greatly reduced when electrons were sprayed onto the

inner walls of the gates. They concluded that the copper surface had oxidized, and

electrons sprayed onto this oxidized surface were stuck there for a long time. This

produced a asymmetrical field, and resulted in a decreased plasma lifetime. For this

reason the copper surfaces were gold plated, and this effect has since disappeared.

Each gate, each end collector and the electron source are connected to sepa-
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rate annealed copper leads that feed through the top of the vacuum can. These leads

provide two functions. First, they allow voltages to be applied to each gate, each end

collector and the electron source. Second, they provide a good thermal path for the

heat generated by the electron source to escape into the liquid helium; thus keeping

the trap near 4.2 K.

The original design of CV had the electron source and the trapping gates in

the constant magnetic field region of the magnet (i.e. near the center of the magnet).

One problem with this arrangement is that the electron source could not be on while

the large magnetic field is larger than 4 kG. With the electron source hot, the I x B

force will destroy the electron source if the magnetic field is too large. To capture a

plasma in a large magnetic field, we first had to trap a plasma in a low field, typically

1 kG, and then ramp the magnetic field up to the desired field. The self inductance

of the magnet is 22H, making the ramp time about 5 min (a maximum of about 5V

can be applied across the magnet leads).

To speed the injection process the electron source was moved outside the bore

of the magnetic, but still aligned with the bore, into a region where the magnetic

field is about 1/20 the field in the center of the magnet. With this new arrangement

electrons emitted from the source, where the magnetic field is less than 3 kG, can

be quickly (a repetition rate of 100 Hz is achievable) and easily transported to the

center of the magnetic. This greatly increases the amount of data that can be taken,

which was necessary to take the relaxation rate data in this thesis.

Another advantage of placing the electron source outside the magnet is that

the electrons follow the magnetic field lines as they travel into the center of the

magnet. This produces a higher density, by about a factor of 20, inside the magnet

than exists around the electron source. Note that, this also happens when the

magnetic field is ramped up by a factor of 20 (see section 3.3).



41

3.4.1 Achieving a High Vacuum

The top of the vacuum can may be removed to overhaul the CV trap. An

indium O-ring is used to seal the top of the vacuum can to the rest of the vacuum

can (see Fig. 3.2). The copper wires that feed through the top of the vacuum can

are sealed with epoxy. At the bottom of the vacuum can is a 3/8" OFHC copper

tube. To obtain a good vacuum, the vacuum can is first removed from the dewar and

attached via the copper tube to a pumping station. The inside of the vacuum can is

pumped down to about 10-6Torr and then tested for leaks. The vacuum can is then

sealed by pinching the copper tube with a special pinching tool. This cold welds the

end of the copper tube, thus sealing the vacuum can with a partial vacuum.

The vacuum can is then placed back into the dewar and all necessary me-

chanical and electrical connections are made. Next the dewar is filled with liquid

nitrogen to precool the dewar and its contents. After about a day the nitrogen is

removed from the dewar, and liquid helium is added to the dewar. At this point, if

there are still no leaks, the pressure inside the vacuum can is probably 10-13 Torr or

less.

The actual neutral helium pressure (only helium will be a gas at this tem-

perature) in the vacuum can is too low to measure. However, an upper limit can be

set at about 10-11 Torr (at 4.2 K) or 4 x 107 atom/ cm3. This limit is determined by

creating a current of a monoenergetic beam of electrons that travels from the electron

source to the end collectors. If the energy of the beam is near the ionization energy

for helium, some of the electrons will ionize some of the helium atoms. By measuring

the current of the electron beam and the current of the helium ions one can estimate

the density of helium atoms. This technique can measure helium densities down to

about 4 x 107 atom/cm3•



42

3.5 Operation of CV

By changing the voltages on the gates, we can capture a plasma (inject),

moved the plasma along the z-axis, or release it (dump). If Vfil, Vbias, Vgrid and

potentials on the gates are adjusted properly, a stable, reproducible plasma can be

trapped. In this section we will describe a typical trap, hold, dump cycle.

Figure 3.4 shows a typical timing sequence for the voltages applied to the

different gates in Fig. 3.36• At time to, Gl, G2, G3, G4, Gs, G6 and G7 are at ground

and Gs is at -V. For simplicity we will take all the voltages to be either ground

or -V. The electron source is turned on with a potential VfiI, and a potential bias

Vbias' Electrons are emitted from the source and fill the region between the electron

source and Gs. At time t = ti, GI is ramped in about 1 msec to -V, capturing

some electrons between GI and Gs. After a short time, typically a few msec, G2,

G3, G4, Gs and G6 are ramped to -V, confining the electrons between G6 and Gs

(see Fig 3.1). By capturing a plasma in G2 + G3 + G4 + Gs + G6 + G7 and then

squeezing the plasma into G7, a plasma with a higher density is captured in G7 than

if the plasma is just trapped in G7 initially.

Once confined, the plasma may then be manipulated (e.g. compressionally

heated, see chapter 5). Finally, the potential on Gs is ramped to ground. This

dumps the plasma onto the end collectors where either the plasma density or plasma

temperature is measured. Once the plasma has been dumped, the potential on Gs

is ramped to -V and GI, G2, G3, G4, Gs and G6 are ramped to ground, and the

process is repeated.

The shot to shot repeatability and the plasma density are essentially deter-

mined by Vfil, Vbias, Vgrid.

6The timing chain described here will capture a plasma in 07. However, typically we capture a
plasma in other gates or a combination of gates.
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3.6 Thermal Equilibrium and Plasma Transport

In an ideal CV trap (one in which the fields have perfect () symmetry, and

there are no neutrals or ions) a pure electron plasma can be confined for a time which

is long compared to the internal rearrangement 7 time. The plasma will then rearrange

itself so that it reaches a state of global thermal equilibrium. However, the internal

rearrangement time for a typical CV plasma immersed in a magnetic field of 60 kG

appears to be very long (possibly 1000 sec or longer). Since a single relaxation rate

measurement requires many shots, waiting 1000sec per shot is unrealistic. Therefore,

the plasmas studied in this thesis are most likely not in global thermal equilibrium.

In this section we first describe some of the properties of a global thermal

equilibrium plasma, then compare this to what is presently known about a CV

plasma. Finally, we discuss particle transport times for a CV plasma.

3.6.1 Global Thermal Equilibrium: An Ideal CV Trap

For a global thermal equilibrium CV plasma, the distribution function is (see

references [8, 47])

f(r, v) = Z-l exp[-(H - wPO)/(kBT)] (3.13)

where H is the Hamiltonian for the electrons in a magnetic field and Z is the partition

function. This distribution describes 1) a plasma rotating about the radial axis with

a uniform angular frequency w; 2) a density distribution which is a monotonically

decreasing function of radius; and 3) in a frame rotating with the plasma, a velocity

distribution which is a Maxwellian with uniform temperature T.

For a global thermal equilibrium plasma in a CV trap (or similar trap),

Prasad and O'Neil [52] have shown that the density profile is essentially uniform ex-

cept near the plasma edge. At the plasma edge they choose a local coordinate that is

7Here rearrangement is a general term implying all possible types of transport in both coordinate
and velocity space (e.g. particle and energy transport, and velocity space transport).
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perpendicular to the edge, and find that the plasma density decreases monotonically

to zero on the scale of a few Debye lengths. At low temperature the Debye length

for a plasma in CV is much less than the plasma radius.

3.6.2 CV Plasma

The concept of a global thermal equilibrium plasma is a theoretical construct

which can never be achieved experimentally (although some plasmas may closely ap-

proach global thermal equilibrium). Ideally, one would like to measure the relaxation

rate for a global thermal equilibrium plasma, since the temperature and to good ap-

proximation the density would be uniform through out the plasma (here we assume

that the dimensions of the plasma are large compared to the Debye length). How-

ever, it appears that a CV plasma is not in global thermal equilibrium, and this

produces some uncertainty in the measured relaxation rates.

When the relaxation rate data was obtained, the density measurement yielded

very little information about the density profile (the density measurement will be

described in section 3.7). Essentially, the density measurement yields an average

density of the plasma which lies inside the radius rl, where rl is the radius of the

collecting region of RI. However, with a new density analysis procedure we have

achieved better spatial resolution of the density profile. This new density analysis

yields density profiles which decrease to zero on a scale length of many Debye lengths,

as opposed to the few Debye length predicted by Prasad and O'Neil for a plasma in

global thermal equilibrium.

Figure 3.7 represents a density plot obtained using the new density analysis

procedure. Recall that this density profile was obtained after the relaxation data

taken (see the last paragraph of this section). Figure 3.7 is a plot of n(r, z) versus z

for various r. In this figure 711 = 103K and near the plasma center, r = 0, z = 2.8,.
n(r, z) ~ 10ge/cm3 so that ADo = AD(r = 0, z = 2.8) ;::;:::6.6 x 10-3 cm. In addition,
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we have inserted two small figures near the top of Fig. 3.7 which show the density fall

off for two local coordinates which are perpendicular to the local edge of the plasma.

The top, left figure is a plot of the density profile versus radius, r, for z = 2.8. In

this small figure r goes from the axis to an r of about 14ADo' The second small

figure, top right, is a plot of the density profile versus z for r = 0 and 4.4 < z < 4.8.

In this latter figure the tick marks on the abscissa are separated by a distance of

10ADo' These small figures represent two cases where the density is not decreasing

to zero on a scale of a few Debye length when viewed by a local coordinate that is

perpendicular to the local plasma edge. Therefore, we conclude that this plasma is

not in global thermal equilibrium. (Note that this results in a non-uniform rotation

rate (i.e. 8wR/8r in Eq. 3.10 is not zero).)

Although a CV plasma is not in global thermal equilibrium, the plasma tem-

perature may be uniform. This is possible since an electron can diffuse radially across

the plasma much faster than the density rearrangement time. This is simply due to

the fact that two electrons can exchange radial position8 and yet cause no rearrange-

ment of the plasma density. In this type of exchange there is no change in the density

profile. However, in such an exchange an electron's energy can remain essentially

the same, causing radial energy transport. In general, radial energy transport time

will be much shorter than the time it takes for the density profile to relax to a global

thermal equilibrium density profile. The energy transport time will be discussed in

section 4.5.

8For example, one might use guiding center drift theory to calculate the radial positions of the
two electrons, electron 1 and electron 2, during a collision. During a collision each electron feels an
electric field produced by the other electron. These fields cause the electrons to E x B drift about
a common axis. If al (a2) is the radial position of electron 1 (electron 2), then during the collision
one can show that al + a2 = const and ar + a~ = const.

•.



47

3.6.3 Plasma Density Rearrangement and Loss Times

For the relaxation rate measurement to work, the radial density profile must

be essentially stable for up to 20 sec (i.e. [(1/n(r))(8n(r)/8t)]-1 ~ 20sec). There

are many processes which may cause the radial density profile to vary with time.

However, these processes can be divided into two classes. In one class are all processes

that change the density profile while conserving the plasma angular momentum. This

class of processes we will call the rearrangement class. The second class contains

all processes which change the density profile and also change the plasma angular

momentum (i.e. transport processes that are a result of external torques). We call

this class the plasma loss class. Naturally, the processes in the plasma loss class are

due to () asymmetries in the fields and/or to background neutrals.

Typically, processes classified under the plasma loss class cause the radial

density profile to vary on the time scale of the plasma lifetime, Tlifetime' Experimen-

tally [13, 15, 36]' it is observed that, in general, short plasmas have longer lifetimes

than longer plasmas, and the larger the applied magnetic field the longer the plasma

lifetime. In addition, on the CV trap we find that low density plasmas in general

have longer lifetimes than high density plasmas.

Transport classified under the rearrangement class has been studied on other

pure electron traps at the University of California at San Diego (see page 56 in refer-

ence [53]). To simplify rearrangement class transport we will consider the transport

along the three coordinates axes, (r, (), z), separately. Transport along z is fast (about

the bounce time) and will be ignored9•

Recent data [10] indicates that () variations in the density profile disappear

on a time scale of wR:1• For the plasmas studied in the thesis wR:1 '" 1 Ilsec. After

trapping a plasma we wait at least 100msec before performing any measurements.

gor course, this assumes that there are no plasma waves with finite kz. These waves, or any
plasma wave, will cause the density profile to vary in time until such waves are damped away.
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This should allow the plasma to come into a local thermal equilibrium (e.g. allowing

the plasma distribution to relax to a Boltzmann distribution along the z axis). The

time of 100msec is about 105 Will times, and we therefore believe that the density

profile is to good approximation independent of () during the measurement phrase.

For a CV plasma with n ::::::10ge/cm3, rearrangement class, radial particle

transport appears to have a time scale of about 1000sec or greater. (Evidence of

this will be presented in section 3.7).

3.7 Plasma Density and Length

For a typical plasma in CV, greater than 99% of the electrons, when dumped,

hit either RIOI' R2, with about an equal number of electrons hitting R1 and R2• This

information says very little about the density as a function of radius and nothing

about () variations in the density. We will assume that the density does not depend

on () (see section 3.6), that electrons stream along the magnetic field line when they

are dumped, and that the magnetic field lines are aligned with the gates and end

collectors.

The number of electrons that hit R1, N1, is the number of electrons between

l' = a and l' = 1'1 (1'1 is the radius of the collecting region of Rt} integrated over the

length of the plasma10,

r1

N1=21l" Jo n(1',z)1'd1'dz, (3.14)

with a similar expression for the number of electrons collected on Ri, Ni, where i can

be 2, 3, 4 or 5. If a good estimate for the plasma length, lp, is known, the average

density of the plasma which lies inside the radius 1'1 would be NI/(1l"1'ilp), when the

plasma was confined. The plasma length is obtained from a computer program which

solves Poisson's equation in (1', z) to obtain a self-consistent n(1', z) and </>(1',z), given

10There is a correction due to the finite size of the gyroradius. This effect is of order rell'1 ~ 1
and will be ignored. We estimate that for the worst case this error is about 1%.
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N1, N2 and the gate potentials. This yields an average density of the plasma which

lies inside the radius rl to about 20% accuracy.

To achieve better spatial resolution of the density profile we capture a plasma

with an initial applied magnetic field Bj• Next, the magnetic field is ramped down

to Br, and then the plasma is dumped. We assume that the magnetic flux enclosed

by an electron's guiding center drift motion is well conserved as the magnetic field is

ramped down (see section 3.3). For CV B (dB/dt)-1 :::::::minutes and wR:1 :::::::1 f-lsec,
so that Bri for an electron is, to good approximation, a constant while the magnetic

field is being varied.

Using Bri = const one finds that all the electrons that hit R1 were inside

the radius r = rlJBd Bj when the magnetic field was Bj• Ramping the field back to

Bj, and repeating this procedure, we find that the number of electrons collected on

the various end collectors is repeatable to about 1%. This method is repeated many

times with the plasma always injected with an applied magnetic field of Bj; however,

to get more information about the radial density profile we dump the plasma at

various Br's.

A computer program is employed to estimate N1(r), where

Nl(r) = J n(r,z)dz, (3.15)

<t.

and n(r, z) is the density when the magnetic field is Bj• We assume that N1(r) = N1;

where N1; is constant for (i - 1)(8r) < r < i(8r) and is zero otherwise, and where

i = 1,2 ... m (i.e. we assume that N1(r) has a histogram shape with m bins out to

a radius of m( 8r) and is zero otherwise). The N1i's are then determined from the

known signa:ls on the end collectors. A least squares method is used to average

out the noise. The calculated N1(r) is accurate to about 10% as long as the radial

variation of N1( r) is gradual.

Figure 3.5 is a plot of N1(r). To construct N1(r) we calculated N1; for m8r =
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3 1"1, and with various number of bins (i.e. m = 5,6,7,8,9). We then average the

N1; to get N1(1"). Finally, a spline algorithm is used to smoothly connect the Nl(1")

versus 1" data points. To construct N1(1") in Fig. 3.5, the plasma was injected with a

Bi = 60 kG and dumped at fields of 10, 15, 20, 25, 30 and 40 kG.

To determine N1(1") we have assumed that the flux enclosed by an electron's

guiding center drift motion is well conserved. This assumption will be broken if

transport (either from the rearrangement class or from the loss class) causes a change

in the density profile. Note, it takes about 200 sec to ramp the magnetic field from

60 kG to 10 kG. To check the problem of particle transport a plasma is injected

at 60 kG, the magnetic field is ramped down to Be (e.g. 20 kG) then the magnetic

field is immediately ramped back to 60 kG at the same rate at which it was ramped

down. Once the field is back at 60 kG the plasma is dumped and the signals on the

end collectors are compared to those where the plasma is injected at 60 kG and then

immediately dumped. It is found that the signals on the end collectors are the same,

to the accuracy ofthe plasma's reproducibility, until Be is about 6kG. At 6kG there

is a 6% difference in the signal measured on R1; that is, n(1", z) has changed slightly.

Once N1(1") is known the density n(1", z) can be determined by assuming local

thermal equilibrium along a magnetic field line (i.e. along z), and using a computer

to solve Poisson's equation,

\72<jJ(1",z) = 471"en(1",z), (3.16)

with the appropriate boundary conditions. Local thermal equilibrium along z allows

one to write •
n(1", z) = C(1") exp(e<jJ(1", z)j[kB71I(1")]), (3.17)

where C(1") is determined from Eq. 3.15.

Sinc~ we do not know the radial dependence of 711 (1"), we assume that 711 (1") is

uniform through out the plasma. At low temperatures this assumption makes little
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Figure 3.5: N1(r) versus r. The solid line is the experimental result and the dashed
line is N1( r) = 4 X 109 exp( -( r /0.048 cm)3) e/ cmz, which is used to obtain n( r, .:) in
Figs. 3.6 and :3.7. The radii of R1 and Rz are marked by the vertical dotted lines.
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error (few %) since n(r, z) is essentially uniform along z except near the axial ends

of the plasma (i.e. the plasma is a good conductor along z and makes the electric

field essential zero along z except near the axial ends). By low temperature one

means a temperature such that Ao(r) ~ Ip(r). Here Ao(r) is calculated using 111(r)

and an average over z of n(r, z), and Ip(r) is an average length of ~he plasma at a

radius r. At the axial ends the density falls off essentially on a scale length of ).o(r)

(this statement may not be valid near the maximum radial boundary of the plasma

(i.e. r ~ 2 rl for a CV plasma); however, for the plasmas in this thesis there is a

fractionally small number of electrons at radii r ;::: 2rd. When ).o(r) '" Ip(r) the

predicted density profile may have errors greater than 10% if 1I1(r) is not uniform

through out the plasma.

Figures 3.6 and 3.7 show plots [49,50] of n(r, z) versus z for various radii. To

calculate n(r,z) we used N1(r) = 4 x 109 exp(-(rjO.048cm)3) ejcm2
, which closely

matches the experimentally determined N1(r) in Fig. 3.5. In Fig. 3.6111 = 104 K and.

in Fig. 3.7 111= 103K.

Figures 3.6 and 3.7 illustrate possible density profiles for a CV plasma. How-

ever, we should warn the reader that N1(r) in Fig. 3.5 may not represent the actual

Nl(r) for each of the relaxation rate data sets. This method of determining N1(r)

was not implemented until after the relaxation rate data was taken. Although, the

experimental setup was essentially the same and the signals on R1, R2 and R3 (in all

cases only about 1% of the electrons hit R3) were also very similar. Also, we have

worked out many of the analyses with different density profiles and find essentially

the same conclusions.
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3.7.1 Plasma Length

We define the plasma length at a radius r as

Ip(r) = n
m

1
(r) J n(r, z) dz (3.18)

where nm(r) is the maximum density at the radius r. Using this definitions as the

plasma length for the data in Figs. 3.5 and 3.6, we find that the plasma length varies

by about a factor of two, and for r < rl this variation is about 20%. However,

a more important issue relating to the relaxation measurement has to do with the

fractional length change of the plasma when the voltage on one of the confinement

gates is changed slightly. More precisely, if the length change due to changing a

gate potential is 8l(r), how does E(r) == 8l(r)/1(r) vary with radius? Numerically

one finds that, although l(r) may vary by about a factor of two over the plasma

radius, the variation in E( r) is much less. This will be important to consider when

the compressional heating model is presented in section 5.2. The amount of heating

depends on E2(r), which implies that certain radial regions of the plasma may be

heated more than other radial regions.

We can interpret Ip(r) as the average axial bounce length for the electrons at

radius r. Of course, about 1/2 the electrons will have a bounce length that is longer

than Ip(r) and the rest will have a bounce length that is shorter than Ip(r), with the

actual bounce length depending on an electron's velocity.

As an electron moves axially is feels a potential near the ends of the plasma

which slow the electron down and reflect it. However, there is a region in the center

of the plasma where an electron's velocity is essentially independent of axial position.

In this region the potential is essentially constant along an axial line (i.e. the axial

electric field is essentially zero). From Eq. 3.17 we see that in the region where the

potential is independent of z, the density will be uniform along z. The region near

the end of the plasma where the potential is varying is called the end sheath. The
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size of the end sheaths depend on the plasma temperature. This can be seen in

Figs. 3.6 and 3.7 by observing the decease in plasma density as one moves axially

away from the center of the plasma. In Fig. 3.6 the density gradually decreases as

one moves axially from the plasma center, and in Fig. 3.7 the density is essential

uniform along z and then falls off rapidly at the ends.

We can write an electron's bounce length as lb(r, va) to explicitly show that

it is a function of radius and velocity. Here Va is the electron's axial velocity at the

axial center of the plasma (or, if the plasma is not symmetrical, the maximum axial

velocity of the electron). (We will ignore the dependence of lb on radius since we

discussed it in the beginning of this section). When we heat the plasma to measure
,

the relaxation rate, we modulate the potential on one of the confining gates, and

this varies lb(r, va) to l~(r, va) (it also varies va). However, we are more interested in

the quantity t::(r,va) = (l~(r,va) -lb(r,va))j1b(r,va), which is also a function of the

electron's velocity. In the heating model (see section 5.2) we assume that t::(r, va) is

independent of radius and Va (see Eq. 5.3). We have checked this assumption and

find that t::(r, va) is essentially independent of Va for temperature 711~ 104 K. For

711.2: 104 K this effect may cause some error in the measured relaxation rates.



Chapter 4

Plasma Temperature and
Temperature Measurement

4.1 Introduction

The plasma temperature measurement is without a doubt the most useful

measurement presently on CV. With it we have been able to measure temperatures

from about 30K to about 2, 000, 000K. It is the main measurement for determining

the relaxation rate, as single relaxation rate measurement can require 400 or more

temperature measurements. In this chapter we will describe how we are able to vary

and measure the plasma temperature.

To measure the plasma temperature we slowly ramp the potential on Ga, Vd,

to ground 1 (see Fig. 3.1) and count the number of electrons, Ne, that escape past Ga

as a function of the potential on Ga. From conservation of energy we know that any

electron with velocity VII such that

(4.1)

will escape past Ga. Here, -eVb is the minimum energy needed by an electron to

escape past the Ga gate. Since Ga is of finite length, -eVb is less than -eVd. Note

1Here we assume that Gs is the gate which confines the plasma from escaping towards the end
collector. In general, this could be almost any gate. The gate which confine the electrons from
escaping toward the end collector is called the dump gate, hence the symbol Vd.

57
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that <p is a function of axial position, hence vII is also a function of axial position.

However, the left-hand side of Eq. 4.1 can be evaluated at any axial position, and

it is simplest to evaluate it at the axial center of the plasma. (The space charge

potential is the major contributor to <p (> 95%) at the axial center of a typical CV

plasma when lp ;:;:3.5 em.)

Assume for the moment that <p does not change as the potential on Gs is

raised to ground. In this case, measuring Ne as a function of Vb will give information

about the parallel velocity distribution, f( vII)' Assuming a Maxwellian for f( vI') we

fit the measured Ne versus Vb to a model to determine the plasma temperature.

This simple explanation of how we measure the plasma temperature works

quite well at temperatures above about 1000K, as long as we allow only about 1% of

the electrons to escape and the plasma length is greater than about 3 wall radii. For

a Maxwellian this means that we use only the energetic tail (i.e. vII > 2VT, where VT

is the thermal velocity) to measure the temperature. At low temperatures it becomes

important to include changes in the space charge potential due to the electrons that

have escaped.

For temperatures above about 200K, we believe that the temperature mea-

surement is accurate to approximately 10%. There are several tests that verify this

claim. Section 4.3.2 describes a method for heating the plasma to a temperature that

can be estimated, and we find reasonable agreement between this estimate and the

measured temperature. vVealso know that the plasma cools via cyclotron radiation

(see section 4.2). Comparing the plasma temperature versus time to that calculated

from radiation theory we find good agreement (see Fig. 4.1). Another test of the

11, measurement was done by Hyatt [25] on a different pure electron trap (see col-

umn OTHER in Table 3.1), where TJ. can be measured to about 5% accuracy. For

plasmas that should be in thermal equilibrium Hyatt measured both 11, and TJ. and
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finds agreement to about 10%.

For a plasma temperature of 50K we believe that the measurement is accurate

to approximately 30%, and at 20K the temperature measurement is, at its present

state, probably not believable. There are many possible explanations for why the

present measurement is limited to about 30K. For a while the lowest temperature we

could measure was proportional to the number of electrons that we could measure.

This, in turn, is proportional to the noise on the front stage amplifier used to measure

the electrons. Great effort was made to build a quiet amplifier, and each time we had

reduced the amplifier noise we were able to measure lower temperatures. Presently,

microphonic noise limits the minimum number of electrons which we can to measure,

and this may still be a problem at the lowest temperature. Second, 30K is equivalent

to about 3 mV, whereas the plasma has about 20 volts of space charge potential.

This means that to measure a temperature of 30K we must include the changes in

the space charge potential due to the escaped electrons and from rearrangement of

the plasma caused by raising the potential on Gs (see section 4.4) to better than 1

part in 104 of the original space charge potential. We must also know the potential

change on Gs to better than 1 part in 104.

During the temperature measurement phase we assume that no electrons are

transported radially. As long as the density profile is a monotonically decreasing

function of radius we believe that this is a valid assumption. However, work done

on other pure electron traps at the University of California, San Diego [11, 12]

indicates that rapid radial transport can occur when the density profile is no longer

a monotonically decreasing function of radius.

At low temperatures the temperature measurement may create a density

profile which is a non-monotonically decreasing function of radius. This can occur

since the first electrons to escape come from on or near the radial axis (i.e. r ::::i 0),
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where the space charge potential is the most negative.

To measure the temperature we have constructed a model to predict the

number of electrons that will escape past Gs as the potential on Gs is slowly raised

to ground. In the model assume we that there are no collisions which can increase

an electron's velocity to the point that it would be able to escape. This assumption

may break down at low temperatures since the three particle collision rate, 1/3, may

become large (see Appendix A.6). For example, at 20K, 1/3 may be as high as

106Hz, and it takes about 50 j.lsec to measure Til' Finally, misalignment of the

plasma and all the gates may be enough to give a poor temperature reading. The

difference in plasma potential from the plasma center to two Debye lengths out in

radius is equivalent to the plasma temperature. At best the experimental apparatus

is machined to about one mil (i.e. 2.54 x 10-3 cm), which corresponds to one Debye

length for a temperature of 100K and a density of 109 e/cm3. Of course there may

be other reasons which limit the present temperature measurement to about 30K.

There is also a limit on how high a temperature one can measure using the

method described in this chapter. This failure reflects the fact that the temperature

measurement assumes that the parallel velocity distribution is a Maxwellian, and

measures the tail of the Maxwellian to get 711' It will be shown in the next section

that the plasma is cooling via cyclotron radiation. In order for the parallel velocity

distribution to stay a Maxwellian, the cyclotron cooling rate must be much less than

the relaxation rate. This sets an upper limit for a meaningful temperature of

(4.2)

We have measured value of the plasma temperature to about 30K but have

reason to believe that it is actually cooling to about 6K at times. This value is

obtained by estimating the heating power from radial expansion, Joule heating (see

section 4.3.1), and balancing this with the radiation power (see section 4.2).
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This chapter is arranged as follows. In section 4.2 cyclotron cooling is cal-

culated and compared to the observed cooling. In section 4.3 different methods for

heating the plasma are presented. A simple, low power heating process is presented

in section 4.3.3. We assume that this heating process keeps the velocity distribution

essentially Maxwellian, and is essential for measuring the relaxation rate.

In section 4.4.1 the temperature measurement models are presented. First the

assumptions built into the the models are given and their relevance to a CV plasma

are analyzed. Next the high and low temperature models are described along with

how we apply these models to measure the temperature. In section 4.4.6 the errors

in the measured temperature due to dT / dr =1= a are analyzed. Finally, in section 4.5

an upper bound to the radial energy transport time is estimated.

4.2 Cyclotron Radiation and Plasma Tempera-
ture

When a plasma is initially created in CV it typically has a temperature

of about 10,000K. Within seconds the plasma cools to near 30K via cyclotron

radiation, provided there is no heating of the plasma. In this section the cyclotron

cooling rate is calculated. It will be shown that cyclotron cooling causes the plasma

temperature to decrease in time as

T(t) = T(O) exp( -t/Tr) (4.3)

where Tr ~ 4 X 108 / B2 sec. To derive Eq. 4.3 one assumes that the plasma is not

being heated, that the relaxation rate is much greater than T;:-1, and kBT ~ liD.(i.e.

quantum effects are ignored).

Consider a single electron in free space (no background radiation) with a

magnetic field B = Bz. The motion of the electron is simple, VII == Vz = const,

Vx = V.L sin(D.t) and Vy = V.L cos(D.t) where D.= eB/me is the cyclotron frequency.
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This motion has an acceleration al. = vl.n and it is well known that an accelerating

charge radiates. The power radiated by circular motion is given by the Larmor

formula as

(4.4)

where El. = mvi/2.
For a pure electron plasma with a Maxwellian distribution in Vl., Eq. 4.4

becomes (see Appendix A.2)

2.. (dEl.) = dTl. = _ 4e
2n2

Tl.'
kB dt dt 3mc3

Here the brackets mean a average over the distribution function.

4.2.1 Plasma Cooling Rate

(4.5)

The cyclotron radiation rate can be determined for many plasmas in CV.

However, we do not directly measure Tl. to obtain the radiation rate. Instead, we

rely on the fact that the relaxation rate is much larger than (T'tl so that 111~ Tl.,

and we measure 111'

When the total kinetic energy of the plasma is conserved, the time evolution

of 111 and Tl. can be written as

(4.6)

(4.7)

Here, one assumes that 111 ~ Tl. (as is the case for most plasmas confined in CV) and

that the distribution of parallel and perpendicular velocity components are described

by a Maxwellian. (See reference [7] for an expression which gives dTl./dt and dl1l/dt

when 11, ~ Tl.')

It is straightforward to show that together Eq. 4.6 and Eq. 4.7 conserve the

total kinetic energy of the plasma. This is achieved by adding Eq. 4.6 to twice Eq. 4.7
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(there is one degree of freedom in the parallel coordinate and two degrees of freedom

in the perpendicular coordinate), from which one obtains d(1], + 2TJ.)/dt = o.
It is also instructive to subtract Eq. 4.7 from Eq. 4.6, which yields

d(1], - TJ.) _ 3 ('T' T)-- // .LII- 1..dt
(4.8)

• Thus, 1]1- TJ. relaxes to zero at an e-folding rate of 3//. In section 5.2 a plasma

heating model will be presented. In the model we assume that the plasma length is

modulated sinusoidally at a frequency f. One conclusion we draw from the model is

that maximum heating per cycle occurs when 211" f = W = 3//. The factor of 3 in the

equation w = 3// is a result of the 3 appearing in Eq. 4.8, and is due to the definition

of // used in Eq. 4.7 (or Eq. 4.6).

When the total plasma kinetic energy is not conserved, the time evolution of

1]1and TJ. are no longer given by Eq. 4.6 and Eq. 4.7 respectively. However, as long

as the distribution of parallel and perpendicular velocity components are described

by a Maxwellian and 1], :::::TJ., one can write the time evolution of 1], and TJ. as

and

1d1], 1 (dEli)- = -//(1]1 - TJ.) + -2 dt kB dt (4.9)

(4.10)dTJ. 1 (dEl.)dt = //(1], - TJ.) + k
B
d1 .

Here dEIi/dt (dEJ./dt) is the rate of change of parallel (perpendicular) energy for

an electron with parallel (perpendicular) energy Ell (EJ.), excluding collisional rear-

rangement of the plasma energy. The brackets imply an average over the distribution

function. In other words, the rate of change of the kinetic energy per electron is given

by

(4.11)

When 1], :::::TJ., it is suitable to consider a single plasma temperature, T,
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given by 3T = 111 + 2T.L, and where

(4.12)

and

(4.13)

Futhermore, when (dEIl/dt) = 0 and (dE.L/dt) is solely a result of cyclotron radiation

(i.e. Eq. 4.5), then (from Eq. 4.11) one obtains

which yields Eq. 4.3. Here,

2 3~c3 3~3c5
-7 - --- ---3 r - 4e2f22 - 4e4B2

(4.14)

(4.15)

where the term on the right hand side of Eq. 4.15 is the radiation rate for T.L when T.L

and 11, are decoupled. When T.L and 111 are decoupled, cyclotron radiation dissipates

energy from the 2 perpendicular degrees of freedom. However, when T.L and 111 are

coupled, (i.e. 7r ~ v-I), cyclotron radiation must dissipate the energy from the

3-degrees of freedom, hence the factor of 2/3 in the left hand side of Eq. 4.15.

4.2.2 Corrections to Calculated Cyclotron Radiation Rate
for Low Temperatures

Obviously, Eq. 4.3 cannot be correct for large times (i.e. t/7r ~ 1) since it

would predict a plasma temperature that is lower than the apparatus temperature,

Tw = 4.2 K. In fact, one expects the plasma temperature to come into thermal

equilibrium with the apparatus wall when the plasma is not heated. (This is one

of the reasons why the apparatus is submersed in liquid helium.) There are several

other reasons why Eq. 4.3 fails when the plasma temperature is about 50K or less.
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At low temperature one must also include quantum effects (i.e. quantized

cyclotron orbits, also called Landau levels: see page 456 in reference [32]). The

energy difference between adjacent Landau levels is

tin/ka = 8.04 B/(60kG) K. (4.16)

At low temperatures (i.e. kaT", tin) a good fraction of the electrons are in the lowest

Landau level, and are no longer able to radiate. This reduces the total power radi-

ated. Calculating (dEl. / dt) including finite apparatus temperature and the quantized

cyclotron orbits, one finds that (see Appendix A.l)

where
R( exp(y) - exp( x )

x, y) = x (exp(y) _ 1)(exp( x) - 1)"

(4.17)

(4.18)

Finally, there are heating terms in Eq. 4.9 and Eq. 4.10 which have been

ignored. One source of plasma heating is due to the radial expansion of the plasma.

This effect will be discussed in section 4.3. A second source of heating is due to

potential fluctuations, noise, on the confining gates. Heating due to noise on the

confining gates has been observed in CV. However, it is believed that this latter

heating process is ignorable when the potentials on the confining gates are properly

filtered. There may also be other sources of plasma heating which we have not

considered.

4.2.3 Experimentally Measured Plasma Temperature

Figure 4.1 shows a comparison of a measured plasma temperature (square

points) and that predicted by Eq. 4.17 (dashed curve) as a function of time for B =

61.3 kG. For almost three decades in temperature the plasma cools exponentially

as predicted by Eq. 4.17; however, the radiation time, Tr = 0.147 sec, is about 30%
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larger than the calculated radiation time. At about 50 K the measured temperature

deviates from an exponential decay, but still continues to cool to about 20 K. At

present we are not sure if the decrease in the cooling rate for temperatures less than

about 50 K is a real effect and if so what is causing it, or if the 11, measurement is

failing.

Figure 4.2 is a plot of the measured radiation time, Tn versus magnetic field.

The solid line is a plot of Tr as given by Eq. 4.15. Note that for large magnetic fields

the experimentally measured radiation time is close to the predicted radiation time.

However, at low fields there is about a factor of 2.5 difference between theory and

experiment.

To calculate Tr we have ignored the fact that the electrons are confined in

a conducting vessel. Such a vessel may act as a waveguide or, possibly, a resonant

cavity (note the vessel in this case is most likely the cylindrical gates G3 to G8 and

the end collectors). Although at the large magnetic fields the fact that the plasma is

contained in a conducting vessel seems to have little effect on the radiation time. It

is not a priori obvious that the radiation time and the calculated time should agree

so well since the wave guide cutoff frequency is equal to the cyclotron frequency of

an electron in a magnetic field of 3.2 kG.

We have also assumed, indirectly by calculating Tr for a single electron, that

an electron does not reabsorb photons emitted by the other electrons (although, the

calculation in Appendix A.l does include absorption by photons produced by a black

body radiator). We have estimated the opacity of the plasma, and concluded that it

probably does not significantly alter the calculated radiation time.
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Figure 4.1: Temperature versus time for B = 61.:3kG. The dashed curve is a plot
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about :30% higher than the predicted time.
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4.3 Plasma Heating

In order to measure the relaxation rate with reasonable accuracy, we need a

method for heating the plasma that leaves the distribution of parallel and perpendic-

ular velocity components essentially Maxwellian with 11, ~ Tl.' We also occasionally

want a plasma that is hot (T ~ 10, 000 K). There are several ways to heat the

plasma. One method heats the plasma a lot but makes the parallel velocity distri-

but ion non-Maxwellian. The other method can be used to heat the plasma a little

while, we believe, keeping the distribution of parallel and perpendicular velocity

components essentially Maxwellian with 11, ~ Tl.' The plasma can also be heated

by the electrostatic energy released as the plasma expands radially (Joule heating).

Joule heating is undesirable, and we must therefore insure that this effect is small.

4.3.1 Joule Heating

To estimate the maximum heating possible from radial expansion (Joule heat-

ing) we assume that the plasma is infinitely long, constant in density n out to a radius

rp, and inside a grounded, perfectly conducting cylinder of radius Rw• If the plasma

expands radially then the total potential energy per unit length, PE, decreases, and

we assume that this energy goes into heating the plasma. 'vVealso assume that

the radial energy transport time scale (see section 4.5) is much shorter than Tr and

n (dn / dtt 1
. The potential energy per unit length is

P E = e2N; ( log(Rw) + .!. )
rp 4

where Np is the number of electrons per unit length. Differentiating P E with respect

to time yields2

d(P E) = e
2 N~ (.!.dn)

dt 2 n dt
(4.20)

21n general, if n(r, t) = n(r/x(t))/x2(t) where x(O) = 1, then d(P E)/dt = _e2 Ng(dx/dt)/x (see
Appendix A.7). This is a more general form for a change in density and gives the same result for
d(PE)/dt as Eq. 4.20 if one evaluate n-1 dn/dt at the origin.
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where nr~ = Np and dNp/ dt = O. Dividing this by Np to get the energy per electron

and subtracting from the right side of Eq. 4.17 one obtains

dT = _TR _ 8.4 x 1O-4N (!dn).
dt Tr p n dt (4.21 )

Here we have converted d(P E)/dt from erg/sec to K/sec and R is defined by Eq. 4.18.

Setting dT / dt to zero gives an equilibrium temperature of

T = _ 8.4 X 1O-4NpTr (!dn) J(
eq R n dt . (4.22)

Equation 4.22 is easily checked by creating a plasma that expands sufficiently

fast that Teq is measurable with the temperature measurement. For example, the

higher the average density, for fixed plasma length and fixed plasma radius, the

larger, in general, the radial expansion rate, n -1 (dn / dt). Note that increasing the

density also increases Teq since Np also increased. Figure 4.3 shows a plot of the

actual central plasma temperature versus time for a plasma with a large expansion

rate. Also plotted in Fig. 4.3 is the temperature calculated from Eq. 4.22 where

dn / dt is estimated from the electrons collected on RI. Note that Teq is a function of

time (this is due to the fact that the experimentally estimated expansion rate varies

with time). Figure 4.3 shows that Eq. 4.22 is good to within a factor of two for a

fast radially expanding plasma.

As was pointed out earlier we try to generate a plasma that we believe cools

to about 6K. This value is calculated from Eq. 4.22 and the estimated plasma

expansion rate, and assumes that all other heating processes are ignorable.

4.3.2 Heating: Dropping Electrons into a Potential Well

The simplest way to heat a non-neutral plasma is to push it over a potential

energy hill. As the electrons fall down the potential energy hill their average kinetic

energy (I( E) is increased by -e(V) where (V) is the average electrostatic potential

.,
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Figure 4.3: Temperature versus time for different expansion rates (dn/dt). The
solid curve is a plot of Eq. 4.22 with dn/ dt estimated from the signal on RI.
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change per electron. After pushing the electrons over the hill and allowing collisions

to redistribute their energy the plasma temperature is increased by -e(V) /3 (the 3

comes from converting 1 degree of freedom into 3 degrees of freedom).

Although a hot plasma may be created by making Vbias, the electron source,

very negative, this method is not employed since the reproducibility of a plasma is

poor under these conditions. It is better to first capture a reproducible plasma and

then heat it. Figure 4.4 shows how this is done (also refer to Fig. 3.3). First, a stable,

reproducible plasma is captured in G2• At time t1 the potential on G2 is lowered

to -V, pushing the plasma past G3 and trapping it into G4 + Gs + G6 + G7 and

possibly G3• Finally, at time t2 the potential on G3 is made more negative, trapping

the electrons into G4 + Gs + G6 + G7• To insure entrapment of the plasma during

this process -eVI and -eVsmust be much greater than -e(V3/3 + c/J) where c/J is the

potential in the center of the plasma. A good estimate of (V) is

(V) ~ V3 - c/J/2. (4.23)

This calculation underestimates the heating since the plasma IS also compressed

when G2 and G3 are lowered.

This method provides a fast simple procedure for heating the plasma. How-

ever, one drawback of this type of heating is that it drastically alters the distribution

function and makes it non-Maxwellian. Of course, in time collisions will evolve the

velocity distribution to a l\'laxwellian.

4.3.3 Heating (and Cooling): Longitudinal Invariant and

111

Another method of heating the plasma is to change the plasma length slowly

compared. to an electron's bounce time, tb = vlI/(21). If the electron sustains no

collisions with other electrons, then the bounce invariant predicts that to good ap-
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proximation vlI(t) = vlI(O) l(O)ll(t). Thus the average parallel energy of the plasma

can be varied.

This method of heating the plasma has several advantages over the method

described in section 4.3.2. First, it can also be used to cool the plasma; in fact, this

method can either increase or decrease vII for each electron. Second, it keeps the

distribution of parallel velocity essentially Maxwellian as long as {l(t) -l(O)}ll(O) is

small. Finally, it can be used to change 111 by a small amount (less than 1%)3. All

of these points are crucial for measuring the relaxation rate in CV.

Consider a particle with velocity v in a I-dimensional box of length 1( t). If

1 is changed slowly compared to the bounce frequency, Wb = v I (2l), of the particle,

then it is well known that vl is an adiabatic invariant, which we will take to be a

constant (i.e. vl = const). This can be written in terms of the particle's kinetic

energy, (E = mv2/2), as Ez2 = const, so that

dE = _2E dl
dt 1 dt

(4.24)

For a collection of particles described by a Maxwellian with temperature T, Eq. 4.24

becomes (see Appendix A.2)

or

1dT 1 d(E) T dl
2& = ka ---;It = -T dt (4.25)

(4.26)( l') 2Tr=Tj i
where i and f are the initial and final values.

For a plasma in CV we take 1as the plasma length, so that T is 11,. In going

from Ez2 = const to Eq. 4.26, dlll is assumed to be the same for all electrons. For

a plasma in CV 1 is a function of an electron's velocity (see section 3.7.1). It is easy

3In principle, the other method can also be used to heat the plasma by small amounts, but in
practice it may be impossible to implement.



75

to estimate this correction for a plasma of average length (l) with a difference in

length between low velocity electrons and high velocity electrons of 81. Let !::i.E be

the difference in energy an electron gets from expansion if its length is (1) - 81/2

versus (1) + 81/2. One finds that

(4.27)

For the data in this thesis, we estimate that (811 (l) )max ~ 5% so that (!::i.E1E)max ~

10%. There is also the problem that electrons at different radii expand by different

amounts. We estimate this effect to give (!::i.E1E)max ~ 10%.

Although this method of varying 711 leaves the parallel velocity distribution

essentially a Maxwellian, it is not true that this Maxwellian will persist when col-

lisions start mixing 111 and Tl.' We believe that as long as 1(111 - Tl.)l/l1l ~ 1 a

Maxwellian describes vII and Vl. quite welL We have estimated (1(711 - Tl.)l/l1l)max

to be about 0.1 for the relaxation rate data present in this thesis.

4.4 Temperature Measurement

Unfortunately, low temperature measurements reqUIre more sophisticated

analysis than high temperatures, though the same basic ideas are employed in both.

The high temperature measurement technique is simple to employ, and a single

temperature can be analyzed in seconds on the small computer connected to the ex-

periment. On the other hand, the low temperature measurement, which can actually

be used to measure any temperature, has taken considerable time to develop, and

the data for each temperature must be transferred to a larger computer for analysis.

Furthermore, it takes several minutes to analyze a single temperature.
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4.4.1 Temperature Measurement Assumptions

The temperature measurement only works for a subset of the CV plasmas.

Below is a list of assumptions that are built into the temperature measurement and

under what plasma conditions these assumptions are met .

• The parallel velocity distribution is Maxwellian .

• All particles with vII such that mVIV2 - ec/>(r) > -e Vb escape over the potential

energy barrier, -eVb, and are collected on the end collectors. Here c/>(r) is

calculated from the electrons which are still confined by Vb. This implies that

the remaining parallel velocity distribution is

f(vlI) = {const x exp(-mvrr/2T), if vII < j-2e(Vb - c/»/m;
0, otherwise .

• Finite length effects are unimportant .

• Vb and T are independent of radius, r .

(4.28)

• The density is a constant out to a radius of fiveDebye lengths (low temperature

assumption).

• c/>( r) is independent of Vb (required only for the high temperature analysis).

Further, we assume that only electrons which are on or near the axis escape

over the potential energy barrier, -eVb. In particular, we assume that only those

electrons which are at a radius, r, such that r < 5>'0, escape. At low temperatures

about 99% of the electrons that are used to measure the plasma temperature come

from a radius such that r < 5 >'0. To understand why this is so, consider an infinitely

long column of plasma with constant densi,ty, no. If no electrons have escaped then

(
r )2 (ksT)c/>(r) = c/>(O) - 2>'0 -e-' (4.29)
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As the potential energy barrier is slowly lowered (i.e. as Vd is raised to

ground), electrons begin to escape, and this changes the plasma density. We write

the new plasma density as n(r, t) and assume that 8n(r, t) = no - n(r, t) ~ no.

One can then estimate the number of electrons that make it over the potential bar-

rier, -eVb, at r = AD and at r = 5Ao. At r = AD only electrons with m vrr/2 >

-e(Vb-</>(0))+(1/2)2 kBT escape; whereas, for r = 5Ao only electrons with m vrr/2 >

-e(Vb - </>(0)) + (5/2)2 kBT escape. For a Maxwellian the ratio of the number of elec-

trons that escape near r = 5Ao to those near r = AD is

N(r = 5Ao) '" 5 exp(e(Vb - </>(O))/kBT - (5/2)2) '" 10-2
N(r = AD) '" exp(e(Vb - </>(O))/kBT - (1/2)2) '" .

For r = 8Ao this number is about 10-7•

(4.30)

This calculation uses the </> calculated from no (i.e. very few electrons have

escaped). Computer modelling of how the electrons escape (see section 4.4.3) shows

that this argument is good unti18n(r = 0, t) :::::::no/2. Note that 8n(r, t) is the largest

at r = o. Thus, most of the electrons used to measure the plasma temperature come

from r < 5Ao as long as 8n(r = 0, t) ;S no/2.

Isotropic Temperature and Maxwellian Distribution

One of the basic assumptions we make in measuring the plasma temperature

is that the plasma is Maxwellian in vIIand V.l and that 111 = T.l. This assumption

breaks up into two parts. First, the plasma must be a Maxwellian just prior to the

start of the temperature measurement phase. Second, it must remain essentially

Maxwellian during the temperature measurement phase. The first assumption is

related to how fast the plasma evolves compared to v-I. The fastest evolution time

for a CV plasma is the cyclotron radiation time which has a minimum time scale of

0.1 sec (at a magnetic field of 60kG), or a rate of about 10Hz. For temperatures

greater than about 25K and densities greater than about 10ge/cm3, the minimum
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relaxation rate is about 1kHz. Therefore we believe that the plasma is described quite

well by a Maxwellian immediately prior to the start of the temperature measurement

phase.

It is also true that at times we perturb the plasma, and this may change

f(vlI' v.d. After such perturbations we hold the plasma an additional time which is

long compared to V-I before measuring the plasma temperature. This should allow

the parallel velocity distribution to relax to a Maxwellian.

During the temperature measurement phase the potential on Gs, Vd, is

ramped to ground which causes the plasma to expand axially. In order for the

plasma to remain a Maxwellian during this expansion the bounce time of the elec-

trons must be much faster than the rate at which Vb is changing (see derivation for

Eq. 4.26). This condition can be written as -e(dVb/di) ~ (kBT)vT/lp (see condition

1 on page 78).

Finally, in the actual procedure for measuring 71, we least squares fit over a

range of vII to determine the temperature. By using least squares fitting to measure

7Ib small random fluctuations in the parallel velocity distribution which deviate from

a Maxwellian are essentially averaged to zero.

All particles with mvrr/2 - e</y(r)> -eVb escape past the confining gate Gs

The condition that an electron escapes over a potential Vb is given by Eq. 4.1.

If Vb is a function of time then </Y( r) can be a complicated function which may depend

on time and z. To good approximation the time and z dependence of </Y can be ignored

if the following conditions are met:

1. -e(dVb/di) ~ (kBT)VT/lp where VT is the thermal velocity and lp is the plasma

length (2lp/VT is a thermal electron's bounce time).
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2. l(dVd/dt)/Vdl ~ Wp ~ wpkrp/XO,l ~ 7.4 x 104y'n rp/lp where Wp is the lowest

plasma mode frequency [9],wp is the plasma frequency, k = 7r / lp, and XO,l ~ 2.4

and is the first root of JO(XO,k) = o.

Condition 1 essentially insures that f(vlI'vl.) = 0 for vII > V-2e(Vb - rfJ)/m.

The necessity for condition 1 can be understood from the following argument. Sup-

pose at t = 0 the confining voltage, Vb, goes quickly, compared to the electron bounce

time, from some large value that confines all the electrons to a new value that lets

some of the electrons escape. For such a rapid change in Vb, the electrons near Gs

see a rfJ(r) = rfJ(r, t = 0), and all of these electron which are traveling towards4 the

end collector with a vII such that

(4.31 )

will escape. As these electrons escape they change rfJuntil the last electron escapes

with rfJ(r, t = 00). A calculation of rfJ(r, t) is very complicated, making it difficult to

find the number of electrons that escape versus Vb. To make this problem calculable

we assume that only and all electrons with vII > Ve = V-2e(Vb - rfJ)/m escape so

that the distribution function of remaining electrons is

fr = const x exp( -mv~/2T)

for vII < Ve and is zero otherwise.

(4.32)

In order that Eq. 4.32 describe to good approximation the actual plasma in

CV while the potential on Gs is being ramped, condition 1above must be satisfied.

Assume that Eq. 4.32 with Ve = Vl describes the parallel velocity distribution when

Vb = V. If V is now lowered by 8V in a time 8t = lp/Vl, then only electrons

with velocities greater than V2, where mvV2 - erfJ> -e(V - 8V), have a chance of

escaping. If (Vl - V2)/Vl <t 1 then Eq. 4.32 will still be a good approximation. Note

4Those going in the opposite direction may not escape until a time 2ip/vll later.
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that (VI - V2)/VI ~ -efJV/mvi. Dividing -efJV/mvi ~ 1 by fJt = lp/VI and using

as a lower limit for VI the thermal velocity one obtains -e(fJV/fJt)/(kBT) ~ vT/lp,

which is condition 1.

A second problem with changing the potential on Gs quickly is that it creates

electrostatic waves in the plasma. This effect has been seen on other pure electron

traps studied by Malmberg et al., and is avoided as long as condition 2 is satisfied.

Finite length effects are not important

Raising the potential on Gs toward ground will cause the plasma length to

increase, and this will cool the plasma. It typically takes many relaxation times from

the time we start ramping the potential on Gs until the plasma begins to escape past

Gs. At this point it takes a time of about v-lor less to measure the temperature.

Since the plasma length increases slowly compared to V-I we expect the plasma

to cool as Tm = To(l0/lr)2/3 (i.e. 3-D expansion) where To and lo are the plasma

temperature and length just prior to ramping the potential on Gs, lr is the plasma

length when electrons start escaping past Gs, and Tm is the measured temperature.

Computer simulations give (lo/lr ~ 0.909) so that Tm/To ~ 0.94.

In general, the <p in Eq. 4.1 is the sum of the gate potentials and the space

charge potential. Suppose that for small changes in Vb one can write <p = <pp + fVb,

where <pp is the space charge potential and f < 1. Then Eq. 4.1 becomes

(4.33)

This says that small changes in Vb are seen as even smaller changes by the plasma so

that not as many electrons escape past Gs as one might expect. Note that this simply

means that changing all the potentials seen by a plasma by the same amount does

nothing. To make the effect ignorable f must be much less than 1. In section 3.7

it is argued that <p is essentially a constant along z inside a CV plasma (at least
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for temperatures below 1000K). This allows one to evaluate <p at any z position

inside the plasma. In the center of a long plasma the contribution to <p from the

gate potential is small. Even for a plasma 3 cm long in a cylinder of radius 1cm,

the gate potential in the center of the plasma is only about 5% of <p. Moreover, the

radial dependence of the gate potential is much less than 5% of <p in the center of

the plasma. Therefore, as long as the plasma is longer than about 3 cm, finite length

effects should not be important.

T and Vb are independent of r

The radial dependence of the vacuum potential in the center of Gs, Vd(r, z),

can be estimated from Laplace's equationS,

1 0 (0 ) 02
-- r-Vd + -Vd = 0,
r or or OZ2

to be

(4.34)

(4.35)~Vd = Vd(r) - Vd(O) ~ - ::2Vdlr=o(2~wr
Since we are only interested in r out to a maximum of five Debye lengths one finds.

that (~Vd/(kET))max :::::6%. For temperatures above 2000K this error is much less

than 6% since the radial size on the electron collector (R1 in Fig. 3.1) is less than

five Debye lengths. For low temperatures, one is more interested in an average of

~ Vd/ (kBT) out to about five Debye lengths. We estimate this average to be less

than 2%.

A discussion of the temperature measurement when the temperature is a

function of radius (i.e. dT/dr =1= 0) is given in section 4.4.6.

5To good approximation the radial dependence of Vb is the same as the radial dependence of Vd.



82

The density is a constant out to five Debye lengths

The high temperature measurement is insensitive to the radial dependence

of the plasma density (see end of section 4.4.2); to make the low temperature mea-

surement calculable we have assumed that the plasma density is constant out to a

radius of five Debye lengths. Using the density data (see section 3.7), we estimate

that for a plasma temperature of 400 K and a plasma density of 10ge/cm3 there is

about a 10% variation in the plasma density out to five Debye lengths. This will

give an error of about 10% to the low temperature measurement.

</>( r) is independent of Vb

For the high temperature measurement we assume that the number of e1ec-

trons that have escaped is small so that the change in </> compared to the temperature

is ignorable. This means that we are able to measure only the tail of the Maxwellian

to get the plasma temperature. This is also the main reason why the high temper-

ature analysis fails for low temperatures. For low temperatures the change in </>( r)

due to the electrons which have escaped over the potential energy barrier can be of

order kBT. To include this change in </>( r) we calculate </>( r) using the density of

electrons which are still confined by the barrier -eVb.

4.4.2 High Temperature Measurement Model

Using the assumptions in section 4.4.1 one can calculate the number of e1ec-

trons that escape past Gs, Ne, as a function of the barrier energy, -e Vb, and show

that, to within 5%,
1 d 1.05
;-dV

b
log(Ne) ~ kBT' (4.36)

If the constant 1.05 in Eq. 4.36 were 1, then the right hand side of Eq. 4.36 contains

the first term of an asymptotic expansion. The second term in the asymptotic
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expansion results in corrections which vary from 0% to about 10%. We have chosen

an average value for the second term by multiplying the first term by 1.05.

The number of electrons that escape between rand r + dr, dNe, is obtained

by integrating a Maxwellian from vII = J - 2e(Vb - </» / m to infinity and multiplying

by 21rlpn(r) r dr,

21rlpn(r)rdrJ
OO

const x exp(-mv~/(2kBT))dvll
J-2e(Vb-</»/m

21rlp n(r) r dr erfc (J -e(Vb - </»/(kBT)) , (4.37)

where erfc(x) is the complementary error function of x. Integrating Eq. 4.37 over

the radius of the central end collector R1 gives the total number of electrons N1 that

escape past Gs and hit the collector Rl,

Next, calculating Eq. 4.36 with the assumption that d</>/dVb= 0 and letting

y = J-e(Vb - </»/(kBT) one obtains

kB~log(Nd = f;l n(r) exp(-y2)/(T.jiy)rdr.
e dVb f;l n( r) erfc(y) r dr

Here we have dropped a term containing d</>/dVb•

For large y (i.e. vII » VT) one can approximate e-y2
/( .jiy) as

_ex_p_(__y_2) = erfc(y) (1 + _1 __ 1 + 19 (~)) .
.ji Y 2y2 2y4 yB

This gives

where
( ) = f;l An(r)erfc(y)rdr
A - f;l n(r) erfc(y) rdr .

(4.40)

(4.41 )

(4.42)
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Since we are dealing with values of y that are greater than 2, we have

O < (If(2y2 T)) < 12
(1fT) rv..

Thus Eq. 4.36 is good to about 5% as long as y is greater than about 2.

(4.43)

Note that when dTfdr = 0, (1fT) is independent of n(r) (i.e. (1fT) = 1fT).

This is due to the fact that to lowest order in 1fy, d(erfc(Y))fdy = erfc(y). In other

words, we have kept only the first term in the right hand side of Eq. 4.40, and the

left hand side is d( erfc(y ))f dy.

4.4.3 Low Temperature Measurement Model

To model how electrons escape for low temperatures it is simpler and more

instructive to calculate the density of the escaped electrons, ne, as a function of

Vb. By escaped density we mean ne = no - n where no is the density just prior

to any electrons escaping over the potential barrier, -e Vb, and n is the density of

the electrons still confined by -e Vb. For a density which is initially uniform one

finds that ne is a monotonically decreasing function of radius and for r > 5).0, ne

is approximately zero as long as ne(r = 0) ;S nof2. This is due to the space charge

potential which makes the potential barrier, -e Vb, smallest a~ r = O. For r = 5).0

the barrier is about 2.5 thermal velocities higher than at r = 0 and allows a much

smaller fraction of the electrons to escape.

The change in the space charge potential due to the escaped electrons, <Pe,

depends only on ne, and can be calculated from Poisson's equation,

(4.44) ..

Integrating a Maxwellian for VII < V-2e(Vb - <p)fm and using ne = no - n, Eq. 4.44

becomes
2 ( -e(V' + <Pe) (r)2\7 <Pe(r) = 47r e no erfc kaT + 2).0 (4.45)
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where V' = Vb-</>o(O) and </>0(0)is calculated from no. If there is no radial dependence

to either T or Vb, then Eq. 4.45 can be written as

'V;1/;= -erfc (V(1/; + (X/2)2))

where 1/;= -e(V' + </>e)/ (kaT), x = r /)..0 and

2 1 d d'V = --X-.
x x dx dx

(4.46)

(4.47)

Equation 4.46 can be numerically integrated to yield 1/;(x, 1/;(0)). The depen-

dence of 1/;on Vb comes from the choice of 1/;(0), and gives the fraction of electrons

at r = 0 that have escaped as ne(r = O)/no = erfcv1/;(O). Once 1/;is known the total

number of electrons that escape onto R1 is calculated as

xdx. (4.48)

For rd)..o > 5 one makes less than a 1% error to Ne by letting rd)..o -+ 00. To this

approximation Ne is only a function of 1/;(0), and can be written as

where

Writing

~(1/;(0)) = 1= erfc (V1/; + (x/2)2) xdx.

(4.49)

(4.50)

(4.51 )

we next calculate e</>e(O)/(kBT). From Eq. 4.44, and assuming that no electrons

escape for r > 5 )..0, e</>e(O)/(kaT) becomes

(4.52)

From Eqs. 4.49 and 4.52 one finds that if 1/;(5) and ~ are known as a function of

1/;(0), then Ne can be computed versus Vb for given T, lp, </>0and no. Note that the
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dependence on no is logarithmic, and therefore uncertainties in the density of order

10% are ignorable as long as Rw/(5 )..0) ~ 1.

Experimentally this method may fail when ne(O) ~ no/2. Letting ne(O) =

no/2 fixes 7/7(0), which in turn fixes~. From Eq. 4.49 one see that for fixed ~ the

number of electrons that escape depend only on lp and T ()..b n oc T). For fixed lp

the lowest temperature one can measure will then depend on the number of electrons

that can be measured.

4.4.4 Differences Between the Temperature Measurement
Models

In the beginning of section 4.4 we state that "measuring the plasma temper-

ature requires two different analyses". Here we have underline the word "requires"

because we need to explain its meaning. Also, we will explain the essential difference

between the two temperature models.

If the plasma density profile is known to reasonable accuracy, the low tem-

perature analysis could be used to measure all temperatures. However, using the low

temperature analysis to measure all temperatures would greatly decrease the rate of

data collection. From a practical stand point, it is better to use the high temperature

analysis whenever possible, especially since for high temperatures the two analyses

yield temperatures which agree to within the accuracy of the models (i.e. to about

10%).

Although, the high and low temperature models have been derived differently,

there are only three differences between these model: 1) the low temperature model

assumes a uniform density profile; 2) and the high temperature model does not

include changes to ~ as electrons escape; and 3) the high temperature model assumes

that y ;:::2. Aside from these difference, these models are identical.

The failure of the high temperature analysis at low temperatures is due to
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microphonic noise from the lead which connects the end collector RI to the first stage

amplifier. This noise is equivalent to about 103 electrons. That is, the minimum

number of electrons presently detectable is about 103. However, in order to obtain a

reasonable determination of the temperature we need to measure at least ten times

the noise limit, or about the first 104 electrons which escape. If, for a typical CV

plasma, 104 electrons are removed from the region around the axis, then the space

charge potential changes by about 5mV. Let this change be 8</>. If -e8</>/(kBT) ~ 1

we can neglect this small change in the temperature analysis. In the high temperature

analysis we assume that -e8</>/(kBT) ~ 1 (in Eq. 4.39 we dropped a term containing

d</>/dVb). When -e8</>/(kBT) becomes of order 0.1 the high temperature analysis

fails, and this typically occurs when T ::::::500 K.

There is an additional assumption built into the high temperature analysis

which also fails when -e8</>/(kBT) '" 1. One can show that when -e8</>/(kBT) '" 1,

y = j-e(Vb - </»/kBT ~ 1 for the electrons near the axis which just have enough

energy to escape. When y ::::::1 it is no long appropriate to keep only the first term

in the asymptotic expansion of exp(y2)/y (see Eq. 4.40).

For temperatures in the range 500K ~ T ~ 2000K and for a central density

n ::::::10ge/cm3, the two temperature analyses agree to within 10%. Below about 500K

the high temperature analysis is no long valid. In the low temperature analysis we

assume that all the initially escaping electrons hit RIo However, ,,;hen T 2: 2000K
there are a significant number of electrons which hit R2 and are not counted as

escaped electrons.

4.4.5 Temperature Measurement: Experimental Method

Experimentally the temperature is measured by simultaneously digitizing the

signal on RI and the potential Vd while Vd is being ramped to ground. The digitizers

are controlled by the same clock and can digitize up to a rate of 1MHz with about
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10 bits of resolution full scale.

The signal on R1 is connected to an inhouse-built, low noise amplifier which

has a noise floor of about 10-9 V/-J'fu and a gain of either 14.6 or 1460. Presently,

the minimum number of electrons that can be measured on R1 is limited by micro-

phonic noise from the lead that connects R1 to the amplifier, and not by noise from

the first stage amplifier. From the first amplifier the signal goes through a second

amplifier/filter and then into the digitizer.

The power source controlling the potential Vd is an inhouse-built -150 V to

+150V amplifier that is linearly ramped to ground during the time the electrons

used to measure the plasma temperature are escaping over the hill Vd• At low

temperatures the deviation of the varying potential Vd from a linear ramp (due to

noise from the power source) is enough that it becomes impossible to measure the

temperature. To overcome this problem a 1-pole lowpass RC filter with a 3-db

point at 100Hz is added to the power source. The potential Vd is monitored by an

offset/ amplifier circuit after the filtering. The offset/amplifier circuit allows one to

offset and amplify Vd so that it is within the voltage range of the digitizer when the

electrons just begin to escape over the barrier -eVb.

Both digitized signals are then read by a small computer. If the temperature

is high enough, Eq. 4.36 is used to determine the plasma temperature. Enough data

is acquired before the electrons begin to escape so that any offset in the signal from

R1 can be subtracted out. Once this is done the logarithm6 of N1 is taken and a

line is fitted to the linear portion of log(N1). A line is also fitted to Vd• The slope

of each line gives an average of d(log(N1)) and dVd which is then put into Eq. 4.36

to determine T. Figure 4.5 shows a plot of N1 and log1o(N1) versus Vb for a high

temperature plasma. In general, the straight line region for log1o(N1) goes from

about one decade in N1 at a temperature of 1000K to about three decades in N1 at

6Care is taken to insure that N1 is never less than or equal to zero.

..
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much higher temperature.

For low temperatures the approximates that y = J-e(Vb - rP) f (kaT) > 2

and that rP is independent of Vb brake down, and the high temperature analysis fails.

In this case the data is transferred to a larger computer where a more sophisticated

program uses Eqs. 4.50, 4.51 and 4.52 to determine T. The program varies T, lp,

and rPo (no is known to sufficient accuracy experimentally) until the sum

(4.53)

is minimized. The sum is over a window in the N1 data chosen by the experimentalist.

C1 removes any offset in the data, and for perfect data Co = 27l'lpAbno. Comparing

lp as calculated from Co to an lp as estimated from section 3.7 gives a check of the

fit. The function g(Vb) gives 7P(0) for a given Vb, T and rPo. Once the parameters

have been determined, N1 and Ne are plotted versus Vb so that the experimentalist

can determine if the fit is satisfactory. Figure 4.6 shows a plot of N1 and Ne versus

Vb for a low temperature plasma.

4.4.6 Temperature Measurement Error When dT / dr =1= 0

From Eq. 4.39 and 4.42 one sees that if dTfdr = 0 then (1fT) = 1fT,

independent of n(r). Also, for y(r = 0) > 2, Eq. 4.43 overestimates the error when y

is set to 2. Note that if lp is also a function of radius, the same arguments hold. This

can be seen by letting N1(r) = lp(r) n(r) in Eq. 4.37 and repeating the calculation

with N1(r). For low temperatures only the electrons near the axis are important.

Here it is believed that lp(r) n(r) varies by less than 10% (see section 3.7) so that

little error is made by setting lp(r) n(r) to a constant.

If dT f dr =/:- 0, the analysis is a little more complicated. vVestill ignore radial

variations in T(r) for the low temperature measurement, arguing that we are only

measuring the temperature over a small region near the axis.
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Figure 4.5: Nl and loglo(Nd versus Vb for high temperature measurement. The
solid curve is Nl and the dashed curve is loglo(Nl). The temperature is determined
from the straight line region of the logio plot.
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Figure 4.6: N1 and Ne versus Vb for the low temperature measurement. Both ~Vl
and loglO(iVd are shown. The dashed curves are the experimental N1, and the dotted
curves show the fit. The percentages on the right mark the fraction of central density
that has escaped for the log plot.
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We believe that the radial variation in the plasma temperature is less than

about a factor of two. Note that even the high temperature measurement does not

measure (liT) over the whole plasma. The signal that hits RI is about 1/2 the total

plasma. At times we have observed the signals on RI and R2• The following is what

one would expect to happen if l(dTldr)1 fT < 1frI' At very high temperatures,

where the space charge potential across the plasma is small compared to the plasma

temperature (i.e. rI ~ AD), one expects7 NI and N2 as a function of Vd to be about

the same. This is because the total number of electrons collected on RI and R2 are

the same when Vd is quickly raised to ground. As the temperature reaches about

1000K (i.e. 5 AD ~ rI for n = 10gefcm3) one expects most of the electrons with

r < rI to escape past Gs before those electrons with r > rI. This, in fact, is what is

experimentally observed and leads one to believe that T(O) and T(r ~ rt} are within

about a factor of two of each other.

To estimate the effect of the radial dependence on the temperature we will

take T(r) to be
To

T(r) = 1+ 8(rfrI)2

One can show from Eq. 4.41 that for small 8,

ITO) -1 < ~
\ T 2'

(4.54)

(4.55)

Numerical integration of (TofT) for various density profiles shows this to be a good

approximation for the range -0.4 < 8 < 1, which covers a factor of two variation in

T(r) for r < rI. Note that it is important to compare (1fT) to liTo since the low

temperature measurement essentially measures To for any reasonable 8.

7The following argument is equivalent to setting dy/dr = 0 in Eq. 4.39.
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4.5 Plasma Energy Transport

As long as the energy transport time (thermal conducti vity) between any two

points in a plasma is much less than the radiation time and V-I is also much less

than the radiation time, the plasma will be isothermal8. In this section we assume

that the relaxation time, V-I, is much less than the radiation time, which is the case

for all the experimental data presented in this thesis.

Consider the energy transport time for the three coordinates (r, (), z). For

the z coordinate the energy transport time is simply the time it takes an electron

to traverse the length of the plasma. This time has a maximum of about 1 f.lsec.

Therefore, the rate at which the plasma comes into thermal equilibrium along a

magnetic field line will be the larger of relaxation rate and the three-body collision

rate (see Appendix A.6).

We believe that the plasma temperature is constant along () at each radius.

The rotation rate of the plasma about the axis of symmetry is not uniform (i.e.

OWR/ or =J. 0). This will cause oT / o() to relax to zero provided there is radial diffusion

of the electrons. If electrons at a radius rex diffuse a radial distance Or in a time tI,

then oT/o() will relax to zero on a timescale to, where toj(owR/or)orl ,......,271" provided

to > tl. We estimate oWR/or from the density data in Fig. 3.7 (see Eq. 3.9) and we

calculate tl from Eq. 4.59, and estimate that to ;S 0.01 sec.
The radial thermal transport time for a CV plasma is more difficult to cal-

culate. Presently there is no direct experimental data on the radial energy trans-

port time. However, it is possible to estimate a lower bound to the radial energy

8Here it is assumed that the plasma's temperature at each point is varying on the time scale of
a cyclotron radiation time. To measure the relaxation rate, the plasma is heated by modulating
the plasma length at a frequency near the relaxation rate, II, (see chapter 5). The time scale for
heating may seem to be much less than the radiation time since Tr ~ 11-1. However, since the
heating power is essentially balanced with the radiation power, the heating is effectively varying
the plasma temperature at the radiation time scale.



94

transport time. This is done by assuming that the density and temperature of the

plasma depend only on radius, r, and also assuming that the particle flux is zero

(i.e. an/at = 0). Finally, assuming that energy is transported radially by collisions,

one obtains (see Eq. 32 in reference [47])

(4.56)

where Vee is the electron-electron collision rate.

From Eq. 4.56 one can estimate an upper limit to the time that it takes for

two radial points, (ra, rb), to come into thermal equilibrium as

(4.57)

For the temperature measurement we want ra = 0 and rb to be the smaller of 5).D

and rI. For the data in this thesis, this estimate gives 20 sec ;S teq ;S 1000sec,

depending on the plasma temperature.

Of course, other transport processes may produce a smaller teq. For example,

O'Neil [46] recently introduced a theory of cross-magnetic-field transport due to like-

particle collisions. In Eq. 4.56 an electron steps a distance rein a time v;/. For low

plasma temperature this step size is very small. However, for sufficiently small rc

one may employ guiding center drift theory to calculate an electron's motion.

During an electron-electron collision each electron's guiding center experi-

ences an E x B drift, and the time integral of the drift velocity over the duration

of the collision yields a step in the guiding center position. For a collision with im-

pact parameter p and relative velocity ti, each guiding center will step a distance

DX ~ ee/(BuIIP)' Integrating over possible impact distances yields an estimate of the

diffusion coefficient, D,

(4.58)
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This will result in a radial thermal relaxation time of

For Dr = 0.05 cm (i.e. average plasma radius) and B

(4.59)

60 kG this yields 3 sec ;S
teq;S 30 sec for temperatures between 102K to 104K. Here we have used VT for an

average ulI' For B = 30 kG one obtains 0.8 sec ;S teq ;S 8 sec.

In this section we have considered the energy transport time along the three

coordinates (r, (), z). We have argued that energy transport along () and z is much

shorter than the radic;tion time, and have concluded that the plasma temperature is

independent of () and z.

For the radial coordinate, a conclusion is not so obvious. We have considered

two radial energy transport mechanisms. The first mechanism yields a radial energy

transport time which is much longer than the radiation time. This mechanism also

yields a transport time which is long compared to 10sec. (The relaxation rate data

was obtained by heating the plasma for about 10sec.) The second mechanism yields

transport times which are on a 1sec to 10sec time scale, A time scale of 1sec may

be short enough to keep the plasma temperature essentially independent of radius.

In order to understand why a time scale of 1sec may be short enough to

keep the plasma temperature almost independent of radius, consider what happens

during a typical relaxation rate measurement. After some effort, we find a modu-

lation frequency f for which compressional heating balances radiation cooling. The

modulation amplitude has been adjusted so that other frequencies near f produce

less heating, and the plasma cools for these frequencies. However, for frequencies

near f, the heating almost balances radiation cooling, so that the effective cooling

time is many radiation times. For example, if the effective cooling time is 10 times

the radiation time, then the effective cooling time is about 1.4sec for B = 60 kG and

is about 5 sec for B = 30kG.
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Nevertheless, a better calculation for the radial energy transport time is

needed before one can say with reasonable certainty whether or not the temperature

is independent of radius.



Chapter 5

Relaxation Rate Measurement
and Data

5.1 Introduction

The relaxation rate is measured by sinusoidally modulating the plasma length

at various frequencies and determining that frequency which produces the most heat-

ing per cycle. By modulating the plasma length, work is done on the plasma through

the component of the total plasma pressure which is parallel to the length change.

The total pressure is the sum of pressure due to kinetic motion and the pressure

due to the potential energy. The potential pressure is much larger then the kinetic

pressure; however, as long as an expansion of the plasma is done quasistatically, the

potential pressure does not directly effect the kinetic energy of the plasma [16]. The

potential pressure indirectly affects the entropy through the self-consistent balance

of forces which determines the plasma volume. Here we are mainly interested in the

change in the kinetic energy of the plasma as the plasma length is altered quasistat-

ically, and we therefore ignore the potential pressure (except to calculate the volume

change during a modulation of the plasma).

Since the length change is parallel to the magnetic field, it is the plasma

kinetic energy parallel to the magnetic field which is directly altered by the modula-.
tion. Collisions then transfer some of this energy to the perpendicular energy. This

97
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causes the parallel pressure as a function of length to be lower during the expansion

part of a cycle than during the compression part of a cycle so that a net heating of

the plasma occurs. In other words, the process is irreversible, implying that entropy

is added to the system which causes the plasma to heat. A model for this heating

process, which we call compressional heating, predicts that maximum heating per

cycle occurs for an oscillating angular frequency w = 31/ where w = 211"f and 1/ is the

relaxation rate. Thus, by measuring the heating as a function of w, and determining

which w produces the most heating per cycle, we are able to measure the relaxation

rate.

In section 5.2 the compressional heating model is presented. The assumptions

built into the model are first presented and their relevance to a CV plasma are

analyzep.. It will be shown that the amount of heating per cycle depends on the

amplitude of the oscillator and on the parameter f3 = wj(31/).

Since the relaxation rate is a function of temperature, one would like to heat

the plasma as little as possible so that corrections to the relaxation rate due to the

temperature changing are small. Unfortunately, the resonance in the peak heating

versus frequency is broad, and the temperature measurement has a relatively large

uncertainty at low temperatures. Together, these make a small peak difficult to

measure. To circumvent is problem we adjust the amplitude of the oscillator so that

the heating power balances the cyclotron cooling power when the frequency is ad-

justed to produce maximum heating. For all other frequencies the cooling dominates.

When this is done, small differences between the heating and cooling powers lead

to large temperature drops when the heating is applied for many radiation times.

These large temperature drops are easily measured. In section 5.3 the procedure of

balancing the cyclotron cooling with compressional heating is presented.

, In section 5.4 the experimental data of the relaxation rate are pr.esented and

•
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compared to theory. Finally, in section 5.5 the major uncertainty in the measurement

of the relaxation rate is analyzed. This uncertainty is due to lack of knowledge of

the radial energy transport time and to the fact that the plasma density and length

depend on radius. This leads to uncertainties in the measured relaxation rate and

the corresponding temperature of about :1:20%.

5.2 Relaxation Rate Measurement Model

To calculate the amount of compressional heating produced by modulating

the plasma length one uses Eq. 4.9 with (dEIi/dt) = -kB1'II(dI/dt)/l. Here, we

will first treat the case where (dEJ../ dt) = 0 (e.g. no cyclotron radiation). The

term -2111(dI/dt)/i was derived in section 4.3.3 using the bounce invariant (i.e.

vIII = const). A second way of deriving this expression, which is more in line with

statistical mechanics, is to consider the work W done on an ideal gas by a small

change in its volume V. (Recall (see section 5.1) that the pressure resulting from the

potential energy of the plasma can not alter the plasma kinetic energy as long as the

plasma is expanded quasistatically.) For a plasma W is the work performed on the

kinetic pressure, and not the total work performed on the plasma. Changes in the

gas's volume are assumed to be along one axis (i.e. along the magnetic field for the

electrons in CV), and end effects are assumed small, so that dV = A dl where dl is a

small length change, and A is the area of the gas perpendicular to the length change.

For an ideal gas d"VV= -PII dV and 111 = nkB1j, where n is the density of the gas. If

no external heat is added to the gas then d"VV= dE where E = kB(1j, + 21'J..)N/2.

Dividing dW by dt one obtains

dW = k d(1j, + 21'1.) N = -nAk 11 di.
dt B dt 2 B II dt

Dividing this by N /2 and substituting nA/ N = 1/1 gives

d(1j, + 21'1.) __ ? Tf1 .!.dl
dt - ~.1 II I dt" (5.2)
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Equation 5.2 is equivalent to adding twice Eq. 4.10 to Eq. 4.9 with (dEIi/di) =

-kBTII(dl/di)/1 and (dEl./di) = O. The connection between these two derivations

comes from the assumption that the bounce time of a particle (electrons for CV)

is much faster than the time scale for the volume change. This insures that the

pressure 11, is uniform throughout the volume (see page 45 in reference [34]).

5.2.1 Relaxation Rate Measurement Assumptions

Below is a list of assumptions that are built into the relaxation rate measure-

ment. The plasma conditions for which these assumptions are relevant are explained

in this section .

• The plasma length is modulated as

1= 10[1 + Esin(wi)] (5.3)

where E ~ 1, when the voltage on one of the confinement gates is modulated

as

V(i) = Vo + 8V sin(wi).

• f( vII,Vl.) is a bi-Maxwellian with 11, ~ Tl. at all times .

(5.4)

• The dominant heating process is compressional heating (i.e. the plasma is ex-

panded quasistatically) .

• The relaxation rate is a constant (i.e. changes in the relaxation rate due to

changes in the plasma temperature and the plasma density during one modu-

lation cycle are ignored) .

• 111(i) = 111(0) exp(ai) [1 + I~'I sin(wi + ()')]when the plasma length is modu-

lated sinusoidally at angular frequency w. Collisions cause the modulations to

be irreversible, producing a net heating per modulation which we include with

the factor exp(ai). vVeassume that aw-1 ~ 1 and I~'I ~ 1.
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• T and n do not depend on radius, the plasma lifetime is very long, and all

electrons have the same E.

• The plasma is treated as an ideal gas.

The plasma length is modulated sinusoidally

To modulate the plasma length the voltage on one of the confining gates is

modulated as

V(t) = Vo+ 8V sin(wt). (5.5)

In general, a sinusoidal modulation of one of the end gates does not produce a

purely sinusoidal modulation of the plasma length. However, the plasma length can

be written as a Fourier series with lowest non-zero frequency w,

(5.6)
n

where n = 1,2,3, ... , 00, B1 = E and the Bn's are determined from the gate potentials

and the plasma density (see section 3.7). To analytically estimate the Bn's, we will

write the length as a function of confinement gate voltage V and Taylor expand for

small changes in the voltage ~ V,

(5.7)

From Eq. 5.5 we have that ~ V = 8V sin(wt). In Appendix A.3, B1 and B2 are

analytically estimated for a well confined plasma (one in which the confining gate

potentials are much greater than the plasma space charge potential). For this case,
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we find that1

(.5.8)

and

(5.9)

where Rw is the wall radius and XO,1 is the first root of JO(XO,k) = O. In general, to

lowest order in bVIVa one can show that

(5.10)

For the plasmas studied in this thesis Rw/(loXo,d ~ 1/6.6. For bV/Vo = 1/2,

worst case, B1 ~ 1/17 and B2 ~ -Bt/8. For bV/Vo = 1/5, a typical case, B1 ::::::1/43

and B2 ~ -Bt/20. These values of B1 agree to within a factor of two with those

estimated in Appendix A.8. In Appendix A.8, E is estimated by experimentally

determining the heating per cycle and comparing it to Eq. 5.39. For most (94%)

of the data in this thesis E < 0.06 so that B2 is estimated to be less than Bt/14.

Therefore, the harmonics in Eq. 5.6 are ignored and Eq. 5.3 is used for the modulated

plasma length.

Also, for finite B2 the peak in the heating does not occur at w = 3v. For

B2 = -Bt/10 we have estimated this error to be about 1%, and for B2 = -Bt/5 the

error is about 4% (see Appendix AA). This error is smaller than those estimated

from other uncertainties and will be ignored.

1A more accurate expression for Bn is

_ (8V)n 00 (8V)2k
Bn - V, LAk,n V,

o k=O 0

For 8V/Vo = 1/2, the worst case, we estimate IB1 - AO,ll;S O.05B1•
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f( vII, vJ..) is a Maxwellian and 111 ~ TJ...

Although f( vII,vJ..) is never measured, we believe it is, to a good apprOXI-

mation, described by a Maxwellian during the entire heating process. First, it most

likely starts out as a Maxwellian at the beginning of the heating phase since the

plasma is trapped by static fields for time which is long compare to V-I prior to

the heating phase, and the plasma evolves on a time scale which is slow compared

to V-I. Second, the potential used to heat the plasma (i.e. 8V in Eq. 5.5) is added

to an existing static field, and all other fields are unchanged. Third, to measure

the relaxation rate, vII and v J.. are varied by small amounts (order t) at a rate near

the relaxation rate, which is the minimum rate at which the distribution function is

relaxing to a Maxwellian. This is also the rate at which collisions equilibrate Til and

TJ... Finally, although more than 104 cycles are applied to a given plasma to measure

the relaxation rate, these cycles are not applied in one long set. Instead, the cycles

are applied in sets of 8 to 138 cycles, and the sets are separated by a time which is

much longer than V-I. This time between sets when there is no heating should give

the plasma ample time to return to a Maxwellian at the start of each set.

As was mentioned in section 2.3.1, for re/b > 1 it is the low velocity electrons,

compared to VT, which contribute the most to the relaxation rate. For a Maxwellian

this is the bulk of the electrons. On the other hand, for re/b < 1 it is the electrons

with parallel velocities greater than about vT(2.34(b/re)I/5 - 1) which contribute

the most to the relaxation rate (see Appendix A.5). For re/b ~ 1, this implies

that electrons in the tail of a Maxwellian contribute the most to the relaxation rate,

which may constitute a small fraction of the electrons. If, for some reason, the

heating process creates a plasma with a distribution function which has no electron

with vII ;:::vT(2.34(b/re)I/5 - 1), then the measured relaxation rate would be lower

than VM, where VMis the relaxation rate for a plasma with the same average kinetic
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energy per electron and the same plasma density but with a velocity distribution

which is Maxwellian. We believe that this is does not happen.

The dominant heating comes from compressional heating

Of course, a sinusoidal modulation of the plasma length at an frequency

f may launch plasma waves which may heat the plasma through Landau damp-

ing [31]' or the plasma may be heated by some other unknown process. We call

these non-compressional heating processes. We feel that Figs. 5.1 and 5.2 demon-

strate that compression heating is the dominant heating process over the frequency

range 1kHz .:s f .:s 1MHz. We have many experimental curves similar to that in

Fig. 5.1 for different values of To (see Eq. 5.39), and all yield maximum heating when

the modulated frequency is near the estimated relaxation rate.

Relaxation rate is a constant

The following derivation for the amount of compressional heating per cycle

assumes that the relaxation rate is a constant even though the temperature and

density are changing due to the changing plasma length. This adds little error to the

results since the changes in the temperature and density are of order E. For example,

during one heating cycle the maximum change in 111 will occur when w ~ v (

one-dimensional compression). If E = 0.02, the most common value, there will be

approximately a 4% (2 E) uncertainty in the measurement of 111 associated with the

relaxation rate. In other words, instead of adding this uncertainty to the relaxation

rate uncertainty, we add it to the uncertainty in 111. Note that for 90% of the

data in this thesis, this effect is less than the 10% uncertainty in the temperature

measurement. The fractional density change is E, which gives an uncertainty to the

relaxation rate of about 5% or less in most cases.
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Time dependence of 11, due to compressional heating

To calculate the amount of heating caused by sinusoidally modulating the

plasma length, we assume that

111(t) = 111(0) exp(at) [1 + I~'Isin(wt + 0')] (5.11)

where I~/I ~ 1, aw-l ~ 1 and use Eqs. 5.2 and 4.7 to solve for a. The procedure is

to expand 11, and Tl. in terms of E, keeping terms only to order E2, and then solving

for a, 0' and I~'I. To order E, one finds that 11, and Tl. vary only sinusoidally in time.

One therefore expects ~' to be of order E and a of order E2• Expanding exp(at) for

at ~ 1, one finds from Eq. 5.11 that

d~, = 11,(0) [wl~'1 cos(wt + 0') + a + 19(E3)].

Averaging this over one cycle gives

( d~l) = a7l,(0).
cycle

(5.12)

(5.13)

From this one concludes that I~'I and aw-l are small as long as E is small.

Later (see section 5.2.2), we will estimate d7l,/dt and average over a cycle to obtain

a.

T and n do not depend on radius, T and n are repeatable from shot to

shot, the plasma lifetime is long, and all electrons have the same E

When modelling how the relaxation rate measurement works, we will assume

that the temperature and density are independent of radius. In the actual exper-

iment it is known that the density is a function of radius (see section 3.7). The

temperature's radial dependence is not known and depends on the radial energy

transport time of the plasma which is also unknown, experimentally or theoretically.
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Lack of knowledge of the radial energy transport time contributes the largest uncer-

tainty to the measured relaxation rates. In section 5.5 we analyze the relaxation rate

measurement, using density profile similar to that in Fig. 3.7, for two cases: zero

radial energy transport and infinitely fast radial energy transport. We argue that

this should put a lower and upper limit on the relaxation rate uncertainty.

It takes many shots to measure the relaxation rate. During each shot, only

the temperature or density of the plasma can be measured. This means that the

temperature and density must be repeatable from shot to shot in order for the

relaxation rate measurement to work. The repeatability of the temperatures and

densities for the plasmas studied in this thesis was about 97%. This adds about 3%

uncertainty to the measured relaxation rates.

To measure the relaxation rate, the compressional heating is applied to the

plasma for about 10sec. During this time the plasma density is changing by at most

3% due to transport process. This density change adds an uncertainty of about 3%

to the measured relaxation rate.

There is also a correction to the heating due to the fact that each electron

has a different t (see Eq. 5.3). There are two reasons why t is not the same for

each electron: 1) the plasma length and the amount of length change due to the

modulated voltage is different for different radii, and 2) the length and the amount

of length change due to the modulated voltage depend on an electron's velocity for

a given radius. The latter condition is caused by the end sheaths, and will most

likely be a problem only at high temperatures (i.e. T ~ 103K). Note that when t

is a function of an electron's velocity, the distribution function in vII is no longer a

Maxwellian during a modulation cycle.

..
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The plasma is treated as an ideal gas

The derivation of Eq. 5.2 assumes that the electrons are uncorrelated (i.e.

r ~ 1 where r = (e2/kBT)(41rn/3)1/3), and the ideal gas equation of state is used,

p = nkBT. For most of the data presented here, this is a valid assumption; however,

a few of the points were taken with a r ~ 0.1. One might wonder if correlations

contribute much to the equation of state when r ~0.1. To estimate the correction

to the equation of state, we will follow along the lines of Dubin and O'Neil [16].

Here we will treat the case in which the expansion is one-dimensional and the

plasma is assumed to be thermally isolated so that the plasma entropy is conserved.

This is equivalent to setting dTl./dt = 0 in Eq. 5.2 and allowing no other forms

of external heating. However, external work applied to the plasma can change the

kinetic energy of the plasma (see page 44 in reference [34]). Conservation of entropy

can be written as

(5.14)

where Cocp is the specific heat at constant density for a classical one component

plasma (OCP). An OCP is a system of like-point charges embedded in a rigid neu-

tralizing background charge and has been shown to be equivalent to pure electron

plasmas trapped in a CV (or similar) trap [38]. If Cocp = 0, uncorrelated plasma,

then for the plasma parameters in CV, Y ~ VIVo, and conservation of entropy,

Eq. 5.14, gives

This is Eq. 5.2 with 1/ = 0 and T = 111'

For r ~ 1, Cocp ~ (0/4) r3/2 so that conservation of entropy gives

(V) 2 (T) 5 3/2:l::- - =l+--f EVo To 20 0 ,

(5.1.5)

(5.16)

where E:l:: = (V - Vo)/Vo. Letting f = 0.1 and IE:l::1 =0.1, one finds that this correction
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is indeed small (~ .3%) and thus will be ignored in further calculations. That is, we

will use p = nkBT as the equation of state for a plasma in CV.

5.2.2 Compressional Heating Model

Writing 111(t) as given by Eq. 5.11 and using the assumptions in section 5.2.1,

we solve for the average heating rate per cycle Q. We start with the following

equations,

(5.17)

and

Next we write 1 as

[ (
eiwt - c.c.)]

1= 1o[ 1+ c sin(wt) 1 = 1o 1+ c 2 i '

where C.C. means complex conjugate. To order c2 one then obtains

d1jdt = (eiwt + C.C.) [ _ (eiwt - c.c.)] .
1 cW 2 1 c 2i

Writing 111 and T1. as an expansion in c,

(0) (1) 2,.,,(2) _O( 3)711 = 71, + c'Ill + c 1.11 + 'V c

and

one finds that, to order cO in Eq. 5.17 and Eq. 5.18,

d (0)
~ - ( 1',(0) _ T(O) )dt - v II 1.

and
d(lt) + 2TIO») = o.

dt

(5.18)

(5.19)

(5.20)

(5.21-a)

(5.21-b)

(5.22)

(5.23)
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Since we take 711(t= 0) = T1.(t = 0), this has the trivial solution,

'T'(O) _ T(O) _ T(O)
.LII - 1. -

To order €1 one gets

d (1)
~ - ( 1',(1) T(l) )dt - 11 II - 1.

and
d(1',(l) + 2T(1)) ( eiwt + G G )II 1. _ -2 T(O) . .- w .

dt 2
Integrating Eq. 5.26 gives

1',(1) + 2T(1) _ -2T(0) ( e
iwt

- G.G.)
II 1. - 2i'

Solving for 7If1) and substituting into Eq. 5.17 gives

(5.24)

(5.25)

(5.26)

(5.27)

Letting

dT(l)
_1._ = -311 T(1) - 211 T(O)
dt 1. (

eiwt - G.G.)
?' .~Z

(5.28)

T(l) = T(O) (~ e
iwt

- G.G.)
1. 2i

and writing ~ = I~I eiB one finds that

. w
tan(O) = -- = -(3

311

and

I~I_ ~ 1
- 3 J1 + (32

One can now solve for 71[1),

(5.29)

(5.30)

(5.31)

'Ilf1) = T(O) [: (~ e
iwt

: G.G.) + ( ~ eiwt2~ G.G.) ] (5.32)

To order €2 one gets

d (2)
~ - ( 1',(2) _ T(2) )dt - 11 II 1. (5.33)



110

and

d(71f
2
) + 2T1

2
») = -2w [r,(l) _ r,(O)( eiwt - C.C.) ] ( eiwt + C.C.)

dt "" 2i 2'
(5.34)

Substituting Eq. 5.32 into Eq. 5.34 and time averaging over one oscillation period

yields

(
d(71f2) ; 2T2») )

cycle

Using the approximation that

411 /p r,(O)

1+ (32 "
(5.35)

(
dr,(2) ) ( dT(2) )_"_ _ _.L_
dt - dt '
,cycle cycle

one finally obtains

(5.36)

(ddt)
cycle

(5.37)

Thus, to order £2 the resulting solution is

(
d'll, ) _ i £2 11 (32 r,(O)

dt 3 (1 + (32) " .cycle

(.5.38)

In Appendix AA, Eq. 5.38 is rederived with B2 included in Eq. 5.6. In this

case the maximum heating per cycle is no longer given by w = 311. However, this

error is estimated to be small for the data in this thesis.

Experimentally, we have tested Eq. 5.38 for two different heating methods. In

one method, the number of heating cycles is held fixed. Note that the total heating

time for this method depends on w. In the other method, the total heating time

is held fixed. A qualitative difference between these two methods can be seen by

integrating Eq. 5.38 for a fixed number of cycles which gives

(5.39)

where To (Tf) is the initial (final) temperature and Nt is the number of heating

cycles. Recall that the formula for dT / dt is only valid for a time which is less than
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a-I = 3(1 + (32)/( 4vt:4(3) (see Eq. 5.13). The important feature about this equation

is that it peaks when (3 = 1 (i.e. w = 3v). On the other hand, if one heats for a fixed

time, then Eq. 5.38 integrates to

(5.40)

where th is the total heating time. Note that this equation peaks for (3 ~ 00. Thus,

by measuring the peak heating when heating for fixed number of cycles versus (3 (i.e.

w), one can determine v; whereas, measuring the peak heating when heating for a

fixed time gives no information about2 v.

Figure 5.1 is a plot ofTr versus frequency (i.e. f = w/(27r)) when the number

of heating cycles is held fixed. Figure 5.2 is a plot of Tr versus frequency when the

heating time is held fixed. Both figures show qualitative agreement with the heating

model (i.e. Eq. 5.39 for Fig. 5.1 and Eq. 5.40 for Fig. 5.2). In both figures, the solid

line is a plot of Eq. 5.38 numerically evaluated with the relaxation rate recalculated

after each heating cycle from Eqs. 2.11 and 2.12. In other words, the solid lines are

plots of Eq. 5.39 and Eq. 5.40 except that the relaxation rate is recalculated after

each heating cycle to include the fact that the average temperature is changing,

which changes the relaxation rate. Also included in the model for the solid lines is

the important effect of cooling from cyclotron radiation.

The experimental parameters for the data in Figs. 5.1 and 5.2 are n ~ 7 x

108 e/cm3, B = 61.3 kG, To = 1364K. In Fig. 5.1 Nt = 80 cycles and in Fig. 5.2

th = 4msec. To insure that all the data points get essentially the same amount of

energy loss from cyclotron radiation, all Tr were measured 50msec after the start of

20ne might guess that letting w -> 00 when heating for a fixed time would be the same as letting
1I = O. In fact, this is not the case, as can be seen by writing Eq. 5.40 in terms of w,
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Nc = 80 cycles E ~ 0.058

adiabatic l-D1500

Figure 5.1: Final temperature versus frequency of oscillator. Heating fixed number
of cycles. The solid line is from theory.
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E ~ 0.061

Figure 5.2: Final temperature versus frequency of oscillator. Heating for fixed
time. The solid line is from theory.
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the heating process (independent of w).

In calculating the relaxation rate there are no free parameters. For Fig. 5.1

the solid line was plotted with € = 0.058 and for Fig. 5.2 an € = 0.061 was used.

These values of € agree well with the value of € = 0.056 obtained from a computer

code which determines plasma length given the plasma density and the confinement

gate voltages.

5.3 Balancing Compressional Heating with Cy-
clotron Cooling

At this point one could take many experimental points of Tf versus frequency

(similar to that in Fig. 5.1) for different To and roughly measure v(T). We say roughly

because v is a function of temperature which means that v(To) may be quite different

than v(Tmax) (Tmax is the maximum temperature reached during the heating process).

For example, the point in Fig. 5.1 taken at 20kHz has a Tf = 1375K. Applying 80

cycles at 20 kHz takes 4msec, so that Tf was not measured until 46msec after the

heating had ceased. Taking into account the radiation cooling, the temperature for

the 20 kHz point rises from 1364K at the start of the heating process to about 1960K

4msec later. After another 46msec, when Tf is measured, the temperature cools to

1375K. Suppose v <X T-l (from the data we find that v <X T-1 for T ~ 1500K),

then v(T = 1364K) will differ by 44% from v(T = 1960K). Thus, in order to get a

good estimate of the relaxation rate from data like that in Fig. 5.1, one must have a

reasonable model of v(T).

Of course, one could make Tmax slightly greater than To when j3 = 1 so that

v(To) ~ v(Tmax). However, this makes the peak difficult to measure, especially at low

temperatures where the measured temperatures have large uncertainties. In fact, it

was the difficulty in determining the relaxation rates at low temperatures which led
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us to modify the relaxation rate measurement from merely a simple heating process.

The modified procedure is to allow cyclotron cooling to balance the com-

pressional heating, as given by Eq. 5.39, when f3 = 1. Heating for a fixed number

of cycles is done because it produces maximal heating when f3 = 1. When f3 =I 1,

holding all other parameters fixed, cyclotron cooling will dominate the compressional

heating, and the plasma temperature will drop. This effect can already be seen in

Fig. 5.1, where To = 1364K and most of the points lie below this temperature. To

make the effect much more drastic, the total number of heating cycles is increased so

that the plasma is heated for many radiation times. This results in a large difference

between the final temperature, Tr and the initial temperature, To unless the heating

and cooling powers are approximately equal. However, to insure that the cooling

time is the same for each w while holding the total number of cycles constant, the

cycles are produced in sets like those shown in Fig. 5.33•

In Fig. 5.3, Nc is the number of cycles per set and the set repetition rate

. i-IIS s . To insure that no sets overlap, we keep Nc/ fInin < is, where fInin is the

minimum frequency used. Finally, is is made much smaller than the radiation time.

This reduces the error which is due to the fact that the plasma is overheated. The

overheating is needed to compensate for the radiation cooling that occurs during ir

where ir is the time during each set when the heating is off, and is a function of w.

For example, in Fig. 5.1 it was pointed out that To = 1364K, and that the plasma

was actually heated to about 1960K for the 20 kHz data point. From Fig. 5.1 one

finds that the maximal heating occurs near 20kHz. Once this is known, fmin can be

set to 10kHz, Nc to 40 cycles and is to 4msec. At 20 kHz it takes 2msec to apply 40

cycles so that the plasma cools for 2 msec between cycles. If 20 kHz is found to give

30ne might reason that heating for a large fixed number of continuous cycles, versus applying
the cycles in sets, would also work. The problem with this procedure can be demonstrated by
letting w -- <Xl (i.e. (J -- <Xl). In this limit Eq. 5.39 predicts no heating. IJowever, holding the
number of cycles fixed and allowing w -- <Xl means that the heating time goes to zero. This, in
turn, gives no time for cooling so that Tr = To, independent of f and Nc.
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maximal heating, then for f = 20 kHz we adjust € so that the temperature at the

start of each cycle is the same. This implies that Tmax ~ To exp(2 msec/Tr) where

Tr is the radiation time. For B = 60 kG, Tr ~ 130msec, so that the temperature

varies by about 2% at 20 kHz. In general, this error is about (exp( t~/Tc) - 1) where

Tc is the cooling time\ t~ = (ts - Nc/ fmax) and fmax is the frequency that produces

maximum heating. In Appendix A.S, t~/Tr is given for each data point (Tr is most

likely smaller than Tc and will therefore overestimate Tmax).

Figure 5.4 shows a plot of final temperature, Tr, versus frequency when the

multiple heating scheme is implemented. If we measure the final temperature a time

ts after the start of the last heating set (see figure 5.3), then the maximum temper-

ature should be To (when € is properly adjusted). However, the actual temperature

is measured a time ts + tm after the start of the last heating set; consequently, the

maximum temperature will be less that To and is called the matching temperature,

Tmatch. Typically tm is about 20msec. For this data, Nc = 24, Ns = 301 (Ns is the

number of sets; the total number of cycles is Nt = Nc x Ns = 7224), ts = 5msec,

n ~ 7 x 108 e/cm3 and B = 61.3 kG. Note that the heating phase lasts about 1.5 sec

(= 5msec x 301 cycles) and is about 10 radiation times. For the diamond points

To = 1130K and for the square points To = 1I0K. Note that each curve is not sym-

metrical about its own peak, but instead has a sharp edge at the point we take to

be w = 3 v. The same shape of Tr versus frequency is seen in computer simulations

of the heating process where the relaxation rate is calculated from theory. This Tr

versus frequency profile gives more information about the relaxation rate than just

its value at To.

To explain the shapes of the curves in Fig. 5.4, we will focus on the data

4Note that here we have injected the phrase "cooling time" instead of "cyclotron cooling time".
The argument above does not depend on the cooling process being cyclotron cooling. In general,
any cooling process (or combination of cooling and heating) will w9rk as long as it does not depend
on w (and the cooling dominates).

•
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Figure 5.4: Final temperature, Tr, versus frequency of oscillator. Heating with
many sets of fixed numbers of cycles. The diamond points are for To = 1130 K and
the square points are for To = 110K. The two horizontal lines mark Tmatch
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taken with To = 1130K. Similar arguments explain the shape of the curve with

To = 110K. Consider what happens to the point marked C. At the beginning of the

heating cycle T = 1130K. Data point C has f = 40 kHz so that at the beginning of

the heating phase (3 ~ 2 (here we will take v = 42 kHz, or (3 = 1 at 20 kHz, which

we get from the data). At this (3 cooling dominates heating and the plasma cools (to

has been adjusted so that the heating and cooling balance for (3 ~ 1). As the plasma

temperature drops the relaxation rate changes. If dv / dT > 0 then (3 increases and

the plasma cools even faster. If, on the other hand, dv / dT < 0 then (3 approaches

1 and the cooling rate decreases. If the temperature drops to a value where (3 ~ 1,

the heating and cooling balance, and the temperature stabilizes. This mechanism

prevents the temperature from continuously falling for the points between 20 kHz to

80kHz, and indicates that dv/dT < 0 for temperatures near 1000K.

In general, all points cool until a temperature is reac-hed such that (3 ~ 1.

However, ifthe relaxation rate versus temperature has a peak of vp and one modulates

the plasma at angular frequency w > 3vp, then (3 is all ways greater than one. For

these modulated frequencies the plasma presumably cools to a temperature near 6 K

(well below the lowest measurable temperature). For the data in Fig. 5.4 we know

that Vp is about 160kHz, so for points where the modulated frequency is greater

than about 80kHz the plasma should cool to about 6K. This is presumably what

is happening for the point marked D; however, the measured temperature is about

60K which was the limit of the temperature measurement for these data points.

Now consider what happens to the point marked A. At the beginning of the

heating cycle T = 1130K. This point has f = 8 kHz so that at the beginning of

the heating phase (3 ~ 0.4. Again, at this (3 cooling dominates heating, the plasma

cools and the relaxation rate changes. Initially, dv / dT < 0, (3 becomes smaller and

the plasma cools even faster. However, at a temperature near 250K the relaxation
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rate peaks, and (3 reaches a minimum value. As the temperature cools further (3

now increases. Finally near 100K (3~ 1, the heating and cooling balance, and the

temperature stabilizes.

Arguments similar to the one given above explain the shape of the To = 110K

data set. However, note that for the 1130K data set, the final temperature versus

frequency increases sharply to Te ~ 1130K, and then falls off slower as the frequency

is increased. This is due to the fact that dv IT < 0 for temperatures near 1130K.

On the other hand, for the 110K the final temperature versus frequency decreases

sharply from Te ~ 110K as the frequency is increased past 10kHz. This is due to the

fact that dv IT > 0 for temperatures near 110K. Thus, a plot of final temperature

versus frequency gives v, the sign of dvldT, and possibly more.

To measure the relaxation rate for a particular temperature, many curves of

Te versus frequency are taken until an E, Ebalance, is found such that for a single Te

versus frequency curve, the maximum temperature is approximately Tmatch. To get

the relaxation rate to higher accuracy, several curves of Te versus frequency are taken

with slightly different E'S. The (3= 1 point is then determined by estimating where

the peak is for each Tr versus frequency curve, drawing a line through the peaks,

and measuring the frequency where this line crosses the Tmatch line. Figure 5.5 shows

such a plot for an actual data point with B = 40.9 kG and To = 2700K. In Fig. 5.5

two curves of Tr versus frequency are shown; one with a slightly larger E than is

needed to balance the heating with the cooling and one with a slightly smaller5 E.

A curve has been drawn through each set of points to better estimate where the

maximums occur. The dashed line in Fig. 5.5 connects the peaks. This line crosses

the Tmatch line at f ~ 16.5kHz with an estimated uncertainty of 5%. In general, the

determination of this frequency has an uncertainty of about this amount.

5for dl/ / dT < 0 a curve of Tr versus frequency with < > <balance underestimates 1/ and a curve
with < < <balance overestimates 1/; for dl/ / dT > 0 the inverse occurs.
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Figure 5.5: Final temperature versus frequency of oscillator for two slightly different
oscillator amplitudes. The maximum heating frequency is taken to be the frequency
where the solid line and the dash line cross.
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5.4 Experimentally Measured Relaxation Rate

In this section we present plots of the measured relaxation rates and compare

these results to theory (see chapter 2). In Appendix A.8, a table of the measured

relaxation rates and other relevant data is given, as well as the experimental setup

used to take this data.

Figure 5.6 shows experimental points of the relaxation rate versus tempera-

ture for three magnetic fields, 30.7, 40.9 and 61.3 kG. For these points the plasma

density was6 n ~ (8:i: 1 ) X 108 e/cm3• For most of the data in Fig. 5.6 the measured

relaxation rate and the associated temperature have errors which are approximately

the size of the plotted symbols. However, there are a few points where the measured

temperature has a larger error. For these latter points we have added the appropriate

error bars.

We find that the relaxation rate peaks near re/b ~ 1, thus the lower the

magnetic field, the lower the temperature at which the peak occurs. Also, for the

same density, the lower the magnetic field, the higher the peak in the relaxation rate.

In Fig. 5.6 we see that the relaxation rate decreases rapidly as the temperature de-

creases below the point re/b '" 1. This behavior is consistent with a recent theoretical

prediction of Q'Neil-Hjorth, who argue that the collisional dynamics is constrained

by a many electron adiabatic invariant in the regime re/b ~ 1 (see section 2.3.2).

In Fig. 5.7 we have plotted the data taken at a magnetic field of 61.3 kG.

Here we compare the data with several theories. There are no free parameters in

the theoretical curves; we use the average density on the plasma inside the radius

rl to calculate the theories. Note that on the bottom abscissa we have plotted the

temperature and on the top abscissa we have plotted re/b. The solid line is a plot

of the predicted relaxation rate as calculated by Q'Neil-Hjorth where we have used

6 Average density as measured on the central collector (see section 3.7).
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Figure 5.6: The measured relaxation rate for three different magnetic fields
(61.3 kG, 40.9 kG and 30.7 kG. The central plasma density was about S x 108 e/cm3.
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Eq. 2.20 for 1.

The dashed line is a plot of the relaxation rate calculated from a Fokker-

Planck equation where re is used instead of AD as the maximum impact distance.

That is, Eq. 2.12 is used to calculate 1. In the regime where this theory is expected

to be valid we find good agreement between the experimental data and theory. The

dash-dotted line is a plot of the Fokker-Planck theory where AD is used as the max-

imum impact distance. Note that for this data AD/re ~ 600. Figure 5.7 clearly

demonstrates that for mixing of perpendicular and parallel energies, the coulomb

interaction is effectively cut off at a distance of about re and not AD when AD ~ re•

As was argued in section 2.3, all points of the relaxation rate should lie on

a single curve if normalized as 11/ (nb2vT) and plotted versus re/ b. Figure 5.8 is a

plot of all the experimentally measured relaxation rates normalized by nb2vT and

plotted versus re/b. The solid line is a plot of the Q'Neil-Hjorth prediction (where 1

is calculated from Eq. 2.20) which is valid for re/b ~ 1. The dash line is a plot of the

Fokker-Planck prediction with re as the coulomb cutoff distance (i.e. 1is calculated

from Eq. 2.12). This prediction is valid when re/b ~ 1. The '8' points are from

numerical simulations done by Hjorth [23, 24]. Hjorth placed 50 electrons in a box

of volume L3 (i.e. -L/2 < (x, y, z) < L/2) and followed their exact orbits, including

their gyromotion. He started the electrons with a bi-Maxwellian distribution, that

is TJjTII = 0.2, and computed the subsequent relaxation rate.

5.5 Error Analysis for the Relaxation Rate

In this section we will estimate the errors in the measured relaxation rate.

The main error is believed to be due to the radial variations in the density. If the

density is not constant, we must determine which density is appropriate (i.e. average

density, central density, etc.). There is an added error if E is a function of radius (i.e.
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Figure 5.7: The measured relaxation rate taken at 61.3 kG compared with several
theories. The solid curve is the Q'Neil-Hjorth prediction valid for re/b « 1. The
dash curve is a Fokker-Planck prediction with re as the cutoff distance. The dot-dash
cu~ve is the Fokker-Planck prediction with '\0 as the cutoff distance.
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10-3

Figure 5.8: All the experimental relaxation rate data normalized by n b2 VT and
plotted versus re/b. The solid curve is the Q'Neil-Hjorth prediction valid for
re/b q:: 1. The dash curve is a Fokker-Planck prediction with rc as the cutoff dis-
tance. The '0' points are the relaxation rates determined by Hjorth from numerical
simulations.
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some radii will do more heating than other radii). For temperatures near 104K, there

is the added problem that an electron's bounce length will depend on its velocity.

This may cause t to be a function of electron velocity.

All of this is complicated by the radial energy transport time, which is un-

known (see section 4.5). In particular, if electrons at a particular radius are heated

more than other electrons, is the energy transport times short so that the whole

plasma is at the same temperature, or is a hot spot created in the plasma which will

give an error to the measured temperature (see section 4.4.2). A general analysis of

this problem is too complicated. We will therefore restrict the analysis to two cases

which are easier to analyze and hope that the real answer lies somewhere between

them. The two cases are 1) a very slow radial energy transport time and 2) a very

fast radial energy transport time. The conclusion of this analysis is that the density

we use in comparing our experimental results to theory generally has an uncertainty

of about 20%. At low temperatures the measured temperatures have uncertainties

of about 30%.

Until now we have ignored the z variations in the density. From Figs. 3.6

and 3.7, one finds that the density depends on z, especially at high temperatures

and at large radii. For a given radius, the relaxation rate measurement measures the

average relaxation rate is given by

(I/(r)) = J I/(r,z)n(r,z)dzj J n(r,z)dz. (.5.41)

This average is straightforward to calculate since 1/ can be written as I/(r, z) =

n( r, z )g(T) where g(T) is the temperature dependent part of the relaxation rate. i

This gives

(I/(r)) = g(T) J n2(r, z) dzj J n(r, z) dz = g(T) (n(r)), (5.42)

7In general, g(T) may depend on other quantities (e.g. magnetic field), but not on the plasma
density. For simplicity, we show explicitly only the temperature dependence.
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where (n(r)) is the average density at radius r.

Note the subtlety of this simple result. As an electron travels along z, it

enters the sheath at the ends. In the sheaths, the total potential is changing in

such a way that it slows the electron down (i.e. vIIis decreasing). Since the velocity

scattering rate for a single electron depends on vII, the actual amount of scattering

that a single electron does may be very complicated. This is especially true at high

temperatures, where the sheaths are long. Since we assume that the plasma is in

thermal equilibrium along a field line with temperature T, the distribution in vIIis

independent of z except for a normalization factor (i.e. the density) and results in

this simple expression for (v( r)).

Analyzing the data in Figs. 3.6 and 3.7, we find that (n( r)) is essentially

independent of temperature, except at large radii. Note that at large radii there are

very few electrons.

To understand what the relaxation rate measurement measures for very slow

radial energy transport times, it is first instructive to consider the low temperature

limit. For low temperatures, the temperature measurement uses only the electrons

near the axis to determine the temperature (see section 4.4.3). vVeexpect the heating,

and thus the temperature, to be fairly constant near the axis. For this case then, the

relaxation rate is measured for those electrons near the axis. These electrons have

a density about 20% greater than the average density measured using end collector

RI.

On the other hand, for high temperatures the measured temperature is the

average temperature over RI. Crude numerical calculations indicate that f. is fairly

constant over rI, and then increases by about 50% out to 2rI. Since we are only

measuring the temperature for electrons inside rI (and we assume that there is no

radial energy transport), we will let f. be a constant and assume that the density /
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variation contributes the largest error. In this case one finds that the heating depends

only on (3 = w/(3v) (see Eq. 5.39).

Suppose at some radius ro (0 < ro < rl)' (3 = 1 and the cooling and heating

balance. For high temperatures dv/dT < O. This together with dn/dr < 0 implies

that for r < ro, (3 is less than 1 and that part of the plasma inside of r = ro

cools (similar to point A in Fig. 5.4 (see section 5.3)). For r > ro, (3 is greater

than 1 and the plasma at each radius greater than ro will cool until (3 ~ 1 (similar

to point C in Fig. 5.4). Now one must ask, for what value of ro is the highest

temperature measured (this is similar to asking what (3 gives the most heating since

we determine the heating by measuring the final temperature). Note that for r > ro

the plasma cools until w/3 = v and since w is the same for each radius we conclude

that v(ro) = v(r) = n(ro)g(T(ro)) = n(r)g(T(r)). This implies that if we know n(r),

g(T) and T(ro) then we know T(r) for r > roo Using Eq. 4.42 to calculate (l/T)

and estimating g(T) we find that ro = 0 gives the maximum to (l/T)-l (not too

surprising). We conclude from this that the plasma center is the hottest and the

temperature decreases with radius. This, given a reasonable model for g(T), leads to

a temperature variation which is about :1:20% of the measured (l/T)-l. Note that

if the radial transport time is finite, then, most likely, the temperature error will be

less than :1:20%. Therefore, the largest temperature variation should be for no radial

transport, which produces temperature variations of about :1:20%.

We will now consider the case where the radial energy transport time across

the plasma is much faster than the radiation time. For this case the error in the

measured temperature is small. Here one needs to balance the total cooling power

of the plasma with the total heating power of the plasma and determine that radius

which contributes the most heating per cycle, Ec.

(5.43)
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Using n(r) and N1(r) = n(r)l(r) from Figs. 3.7 and 3.5, and the fact that f. appears

not to vary too much for the bulk of the plasma, we find that most of the heating

occurs at a radius where n(r) ~ 0.8 (n) ( (n) is the average density of the electrons

that hit R1 when dumped). This is essentially the radius with the most electrons.

From this analysis we conclude that for very slow radial energy transport

time the temperature is known to about :1:20% and the density is between (n) and

1.2 (n). For very fast radial energy transport there is little error in the measured

temperature and the density will be about 0.8 (n). Since we do not know which of

these to choose from we combine the error and say that the density and temperature

are known to about :1:20%.

5.6 Conclusions

Our measured relaxation rates are consistent with a Fokker-Planck prediction

as calculated by Ichimaru and Rosenbluth when re/b ~ 1, provided that the pre-

diction is modified by the approximation of Montgomery, Turner and Joyce. 'When

re/b ~ 1 and ).0 ~ re (recall that ).0 ~ re for the plasmas studied in this thesis)

Montgomery, Turner and Joyce argue that the coulomb interaction is effectively cut

off at a distance of re instead of ).0.

Our results are also consistent with the O'Neil-Hjorth prediction when re/b <t:

1. O'Neil and Hjorth predict a rapid decrease in the relaxation rate as re/b is

decreased below about 1. This, as O'Neil [44] has argued, is most likely due to a

many electron adiabatic invariant which constrains the exchange of perpendicular

and parallel energy. Our results clearly demonstrate that a rapid decrease in the

normalized relaxation rate occurs as re/ b is decreased when r e/ b <t: 1.

A recent calculation [19] of the relaxation rate has yielded rates which are

about a factor of 4 larger than the O'Neil-Hjorth prediction when re/b '" 0.01. This,
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however, does not alter the conclusions we have made regarding the experimental

data since the measured low temperatures may have systematic errors as large as

30%. We find good agreement between our results and the newly calculated relax-

ation rates if we reduce the measured low temperatures by 30%.



Appendix A

Appendices

A.I Cyclotron Radiation Rate Calculation

In this section we calculate the radiation cooling rate for a pure electron

plasma immersed in a large magnetic field. This calculation includes quantum ef-

fects (i.e. Landau levels), and assumes that the background radiation is in thermal

equilibrium with a temperature Tw• We assume that the distribution of perpendicu-

lar energy is, at all times, described by a Boltzmann distribution with temperature

TJ.(t). The cyclotron radiation causes TJ. to decrease, assuming TJ. > Tw, toward

Tw• For the moment we will ignore the electron spin. At the end of this section, we

comment on the electron spin and its effect on the radiation rate.

Let -R(EJ.) be the energy loss rate for an electron with perpendicular energy

EJ.. The energy loss rate per electron for a plasma is then

(A.l)

where h(EJ.) is the perpendicular energy distribution function. Note that we have

assumed that R is unaffected by the electron-electron interactions. This is a valid

assumption for a CV plasma since an electron's gyro-orbit is essentially unperturbed

by an electron-electron collision. This allows one to calculate R(EJ.) from a single

electron Hamiltonian.

132
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For a single electron immersed in a magnetic field, Landau has shown that

the Hamiltonian for the coordinates perpendicular to the magnetic field is reducible

to a harmonic oscillator Hamiltonian (see reference [32]). The perpendicular energy

is then El. = En = liS1(n + 1/2). This, together with the assumption that h(El.) is

a Boltzmann distribution gives

dT 00 /00
kB dt = - ~ exp( -En/(kBT))Rn ~ exp( -En/(kBT)) (A.2)

where the integral has become a sum over possible states of El. = En and Rn =

One must now determine Rn. First, Rn can be written as

Rn = An + BnI(O) [1 - exp(nO/(kBT)) 1 (A.3)

where An and Bn are the Einstein coefficients for an electron in state n. That is,

An is proportional to the rate at which an electron in state n spontaneously emits a

photon and Bn is proportional to the rate at which an electron in state n is stimulated

by the background radiation field into emitting a photon. This gives

dTl. - I:~=lexp( -En/(kBT)){An + BnI(O) [1 - exp(nO/(kBT)) l}
---;It = I:~=oexp( - En/ (kBT)) (A.4)

Since the Einstein coefficients do not depend on the temperature of the

plasma, one can evaluate Bn in terms of An for any plasma temperature. Choosing

the plasma temperature to be Tw is judicious, since the plasma will be in thermal

equilibrium with the background radiation field, which implies

(A.5)

for each n. This gives

dTl. = - I:~=lAn exp( -En/(kBT)) (exp(nO/(kBTW)) - exp(nO/(kBT))). (A.6)
dt. I:~=oexp( -En/(kBT)) exp(nO/(kBTw)) - 1
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To calculate the spontaneous emission term, An, we will use Eq. 12 on page

178 in reference [21], which gives An as

(A.7)

Here, an electron has emitted a photon by making a transition from an initial state

i to a final state f. Note that !V x = -d?x/dt2 for a harmonic oscillator with

frequency n (see pages 191 to 197 in reference [56]). If one substitutes -n-2d2x/dt2
for x in Eq. A.7, then one recognizes An as the quantum equivalent of the classical

Larmor formula (see Eq. 4.4).

A calculation of (ilxlf) is fairly straightforward. Since the Hamiltonian is

that of a harmonic oscillator, one can write x as

(
n ) 1/2

X = -- (a+at)
2mn

(A.8)

where a and at are the creation and annihilation operators1 respectively (see pages

241-242 in reference [32]). The initial state of the electron is (nl. Since the electron

is radiating energy, the final state f must be less than n. This implies that only

the creation operator contributes to (ilxlf). Finally, the creation operator gives zero

contribution to (ilxlf) unless the final state is f = n - 1. Thus, l(ilxlf)1 becomes

(
n ) 1/2

l(ilxlf)1 = 2:n (A.9)

Using a similar expression for l(iIYlf) I, and substituting these into the equa-

tion for An, Eq. A.7, one obtains

After a little more manipulating, one finally obtains

dTl. 4e2n3n ( exp(nn/(kBTw)) - exp(nn/(kBT)) )
dt = - 3c3m exp(nn/(kBTw)) -l)(exp(nn/(kBT)) - 1) .

1In some books these are called raising and lowering operators.

(A.I0)

(A.H)
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Substituting this for (dEl./dt) in Eq. 4.11 and assuming that the temperature stays

isotropic at all times (i.e. using Eq. 4.12 and Eq. 4.13), one finally obtains Eq. 4.17

and Eq. 4.18 for dTfdt.

To end this section we will make a few comments about electron spin. In

particular, we estimate how much an electron's spin changes the cyclotron radiation

rate calculated here. First, if the external magnetic field is uniform in space, then an

electron's spin is decoupled from the rest of the electron's motion. In this case the

spin has no effect on the cyclotron radiation rate. Second, for time scales of order

the cyclotron radiation time, the orientation of an electron's spin does not flip (e.g.

go from a spin of -1/2 to a spin of +1/2) except, possibly, through coupling with the

gyromotion, and this happens only when the magnetic field has spatial dependence.

For nonuniform magnetic field, the spin energy may be coupled to the per-

pendicular energy. In this case the perpendicular energy will then have to dissipate

some of the electron spin energy as the plasma cools. However, the total spin energy

is much less than the total kinetic energy, and thus the calculated radiation rate, as

given by Eqs. 4.17 and 4.18, changes only slightly when spin and particle motion are

coupled.

When the spin of an electron is included in the Hamiltonian, the total energy

of an electron changes by either 1iJJ/2 or by -Tin/2, depending on the orientation

of the electron's spin to the magnetic field axis. If an electron's spin changes state,

the total energy of the electron changes by Tin, which is equal to the energy differ-

ence between two adjacent Landau levels2. For a plasma which is described by a

Boltzmann distribution, the energy per electron due to spin, energy above the spin

2For breivity we have dropped the Lande g-factor, which will makes a correction of about 0.1%.
The Lande g-factor make the energy difference between adjacent Landau levels slightly different
than the energy difference between the two spin states.
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ground state energy, is

E
s
= Tin ( exp( -Tin/(2kBT)) )

exp(Tin/(2kBT)) + exp( -Tin/(2kBT)) , (A.12)

whereas the total kinetic energy is 3kBT /2. Thus, the ratio of spin energy to kinetic

energy is

where x = Tin/(kBT).

R
E
= 2x

3(1 + exp(x))
(A.13)

For kBT ~ Tin, RE is much less than 1, and the spin energy can be ignored

when calculating the cyclotron radiation rate. In fact, the radiation rate decreases by

1/(1 +RE), which is important only for x I'V 1. For x I'V 1 the radiation rate decreases

by about 15% if an electron's gyromotion and its spin are coupled. For B = 60 kG,

Tin/ kB = 8.1 K so that x I'V 1 implies a plasma temperature of 8.1 K. For B = 60 kG

and a plasma temperature of 30 K (i.e. the limit of the temperature measurement),

the correction to the calculated radiation rate is at most 8%. Such small corrections

are probably not noticeable with the present temperature measurement.

A.2 (dE / dt) = d(E) / dt = (kB/2)dT / dt

In this section we consider a distribution of particles which are described by

a Maxwellian, and where the energy of particle j is given by

(A.14)

Note that C(t) does not depend on the particle's energy and that C(O) = 1. This

form for the particle's energy comes from a differential equation of the form dEj/dt =

Ejd(log( C)) / dt.

Often one is not interested in Ej(t) but (E(t)) where the average is over

the distribution of particles. For example, from cyclotron cooling one has C (t) =

exp( -tiT:) (see Eq. 4.4) and from the bounce invariant analysis one has C(t) =
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(l(O)/1(t))2 (see Eq. 4.26). To simplify matters, we treat only the I-dimensional case

(e.g. E = Ex)' The two dimensional case is handled by writing E = Exx + EyY and

solving for each dimension independently.

We wish to show that (dE/dt) = d(E)/dt = (kB/2)dT/dt. This occurs since

simply increasing all the particles' energies by a common factor does not change the

nature of a Maxwellian; it changes only the temperature, or average energy, of the

particles. The expression for (dE / dt) is

(dE/dt) =1:~(m;2) exp(-mv2/(2kBT))dv /1:exp(-mv2/(2kBT))dv.

(A.15)

Assuming that T(t) = T(O)C(t), one obtains mv2(t)/(2kBT(t)) = E(t)/(kBT(t)) =

E(O)/(kBT(O)) which does not depend on time. Thus, the time-derivative can be

pulled outside of the integral (note that dv. occurs in both the denominator and the

numerator, so that changing dv to dvVC(t) also has no effect), and therefore

d (f~oo(m;2) exp( -mv2 /(2kBT))dV)
(dE/dt) = dt f~ooexp(-mv2/(2kBT))dv = d(E)/dt.

Since (E) = (kB/2)T, one obtains

d(E) _ kB dT _ kBT(O) dC(t)
dt - 2dt - 2 dt'

(A.16)

(A.17)

This gives T(t) = T(O)C(t) which demonstrates that the original assumption and

the final solution are self-consistent.

.•
A.3 Modulated Length Fourier Coefficients

To modulate the plasma length, the potential on one of the confining gates is

modulated sinusoidally. In general, a sinusoidal modulation of one of the end gates

will not produce a purely sinusoidal modulation of the plasma length. However, the

plasma length can be written as a Fourier series. In this appendix, we will estimate



138

the fundamental amplitude and first harm"onicamplitude of this Fourier series. That

is, we will estimate B1 and B2 in Eq. 5.6.

We assume that the plasma is well confined (one in which the potentials on

the confining gates are much greater than the plasma space charge potential), and

consider a plasma that is trapped in G7 (see Fig. 3.1). We take the potential on G7

to be ground and the unmodulated potential on G6 and Gs to be Vo. The potential

on G6 is modulated as V(t) = Va+ 8V sin(w t).

Let Z = 0 be the boundary between G6 and G7 and let z' = 0 be the boundary

between G7 and Gs. For r = 0 and a zero temperature plasma, the plasma stops

abruptly at each end. When the modulated potential is turned off, we let the plasma

stop near the G6-G7 boundary at the point Zo and near the G7-GS boundary at the

point z~. This gives a plasma length at r = 0 of 10 = 13 - Zo - z~ where 13 is the

length of G7. We now assume that 13/Rw ~ 1, so that we can ignore the potential

contribution due to Gs near Zo (similarly, we ignore the potential due to G6 near z~).

First, consider the plasma end near G6• The vacuum potential Vv from G6 is

(A.18)

where In is the Bessel function of order n, and XO,k is the kih.. root of JO(XO,k) = o.
This formula for the vacuum potential assumes that G6 is semi-infinite in length.

By well confined, one means that the plasma ends at a point zo/ Rw ~ 1; thus, to

a good approximation only the first term (k = 1) in Eq. A.18 is needed. This, for

r = 0 and for z = Zo, is

(A.19)

Here, ~ is the potential contribution from G6 at the point Zo where the plasma ends.

Note that if the plasma density is changed from n to n + on, ~, to lowest order in

on/n, will change to (1 + on/n)~.
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Now let the potential on G6 change to V = Vo+~V. This causes the plasma
length to change, causing, in turn, a plasma density change. The fractional plasma

density change is given by
On 10 - 1
-""'---e:n "'" 1

0
- •

where 10 is the original length and 1 is the new length. The new point where the

plasma ends is given by

Solving for z gives

( )
T7 "J Vexp(-zXo,dRw)

1+ e: Ve"J () •XO,IJ1 XO,1
(A.21)

(A.22)

As for the point where the plasma ends near Gs, one has a similar equation

for z', except that V = ~,

The new plasma length is 1= 13- Z - z', which gives

(A.23)

and

d1 I
dV V=Vo

-Rw

10Xo,I(1 + 2Rw/(!oXO,I))VO
(A.24)

d
2
1 I Rw

dV2 V=V
o
= 10XO,1(1 + 2Rw/(!oXO,1))V02' (A.25)

Here we have dropped a term of order (Rw/(!OXO,I))3 in the last equation, and we

have used
•

and

de: -1 d1
dV = Z;; dV (A.26)

(A.27)
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Substituting this into a Taylor expansion for !(V), Eq. 5.7, with ~ V =

8V sin(w t) yields

! ~ ! {1 Rw (8V)2
o + 4!OXO,1(1 + 2Rw/(loXO,1)) Vo

Rw (8V) .- -------- - sm(wt)
!oXo,1(1 + 2Rw/(loXo,d) Vo

Rw (8V)2 . }
+ 4!OXO,1(1+2Rw/(loXO,1)) Vo sm(2wt+7r/2) .

(A.28)

(A.29)

(A.30)

Thus, to lowest order in 8V /Va,

and

(A.31)

(A.32)B2 = Rw (8V)2 = _ B1 (8V)
4!o(1+2Rw/(loXO,1)) Va 4 Va .

For the data in this thesis, 8V/Vo is typically about 1/5 so that B2 I"V - BI/20,

and is indeed small by this estimate.

A.4 Heating versus w including B2

When the plasma length modulation is a pure sinusoid, the compressional

heating model (see section 5.2.2) predicts maximum heating per cycle when (3 =

1 (i.e. w = 3v). When harmonics are included into the length modulation, the

maximum heating no longer occurs at (3 = 1. For example, if the first harmonic's

amplitude is much bigger than all the other amplitudes, including the fundamental's

amplitude, then the maximum heating per cycle occurs when 2w = 3v (i.e. 2(3 =
1). In this section the modulation frequency which produces the maximum heating

per cycle is determined when the fundamental amplitude and the first harmonic

amplitude are non-zero (i.e. B1 and B2 are non-zero and Bn = 0 for n > 2 (see

Eq.5.6)).
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The plasma length is assumed to modulate as

l( t) = 10[1 + e sin(w t) + 8e sin(2w t)]. (A.33)

•

Here B1 = e and B2 = oe. This results in an average heating per cycle (see the

derivation in section 5.2.2) which is given by

871"2 [13 2 413 ]
~7I1 = 711ge 1+ 132 + 20 1+ (213)2 (A.34)

By cycle we mean a time equal to 271"/w. For this case, the peak in the heating lies

between 13= 1 and 13= 1/2, depending on the size of O. Table A.11ists various values

of f3max versus 0, where f3max is the 13 which produces the most heating per cycle.

From this table, we find that one makes less than a 4% error by letting f3max = 1

(i.e. w = 3v) as long as 0 is less than 0.2. For the data in this thesis we believe that

o ;S 0.1, so that we are making less than a 1% error by letting f3max = 1.

0.0 1.00
0.1 0.99
0.15 0.98
0.2 0.96
0.25 0.94
0.3 0.92
0.4 0.87
0.5 0.81
0.7 0.71
1.0 0.62

Table A.I: Corrections to f3max due to finite harmonics of the modulated plasma
length. 0 is the ratio of the first harmonic's amplitude to the fundamental's ampli-
tude.

A.5 I for Small rc/b

In reference [48]' J(rc/b) is given by Eq. 24 (Eq. 2.16 in this thesis). This

equation is very difficult to calculate unless r;, ~ 1 (i.e. r c/ b ~ 1). In this thesis,
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the experimental data is compared to Eq. 2.20, which is much easier to calculate.

Equation 2.20 is an approximation to l(re/b) valid for re/b ~ 1. In this appendix

we derive Eq. 2.20.

Using Eq. 2.17 for h(K,u3,TJ) and Eq. 2.18 for g(TJ), Eq. 2.16 for I becomes

It is worth stopping at this point and examining the integral over TJ. First, although

the TJ integral seems to depend on K, / u3, in fact it does not. This can be seen by

letting TJ' = TJJK, / u3. Second, for large K, the main contribution to the integral comes

from small TJ. This is fortunate since Eq. 2.17 and Eq. 2.18 are an approximation to

h(K,u3,TJ) and g(TJ) respectively, and are only valid for small TJ. For the moment, we

will assume that K, is large enough so that these approximations are valid.

Note that TJ is merely the impact distance p divided by bll• If the magnetic

field is small (i.e. re/b ~ 1), then the main contribution to velocity space scattering

occurs for TJ> 1 (see section 2.2). However, for large magnetic field (i.e. re/b ~ 1),

the main contribution to the scattering occurs for small TJ. This latter case can be

understood by considering the time r that characterizes the duration of a collision.

r is about (p/VII)-l when TJ 2: 2. The larger !1r is, the stronger the adiabatic

invariant and consequently the lower the scattering rate. Here,!1r = !1P/vlI =

(!1bll/vlI)(p/bll) = (!1bll/vlI)TJ. Therefore, the larger TJ for a given (!1bll/vlI) the larger

!1r will be, and thus the stronger the adiabatic invariant. Consequently, collisions

with small TJcontribute the most to the relaxation rate when re/b ~ 1.

Preforming the TJ integration gives
a.

l(re/b) ~ 3.79 roo du _ex_p_(-_u_
2

_/2_)exp( -1rK,/(3).
Jo u

(A.36)

For large K, (i.e. small re/b), the u integral can be evaluated using the saddle point

method (also called method of steepest descent in some sources; see pages 373-376
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in reference [1]).

The saddle point method works well for integrals of the form

fc g(z) exp(sf(z)) dz (A.37)

when s is large. In this case, the main contribution to the integral comes from the

region in z where f(z) is a maximum. Let Zo be the point where f(z) is a maximum.

The saddle point procedure is to Taylor expand f(z) about the point Zo and then to

keep only terms to order (z - ZO)2. Also, g(z) is assumed to be essentially constant

over this region.

To see that the a integral is of the form of Eq. A.37, let a' = a/",1/5. The a'

integral then becomes

(A.38)

Here, s = ",2/5, f(a') = -a12/2-7r/a'3 and g(a') = l/a'. If ",2/5is large enough, then

the main contribution to the integral will come from the region near ab = (37r)1/5,

which is where f( a') is a maximum. Taylor expanding f( a') about ab gives

Substituting this for f( a') gives

- exp( -2.04",2/5) {=, ( 2/5' , 2
I(re/b) ~ (37r)1/5 io da exp( - 5/2)", (a - ao) ).

(A.39)

(A.40)

•

Again, it is worth examining the integral before evaluating it. First, one might

guess that '" has to be very large in order for the saddle point method to work

since s = ",2/5. In fact, numerical calculations of Eq. 2.19 show that the saddle

point method is good as long as '" 2: 1. This happens mainly because of the 5/2 in

exp( -(5/2)",2/5(a' - ab?)' which effectively increases", by a factor of (5/2)5/2 ~ 10.
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Since the integrand is a gaussian function, the main contribution to the

integral comes from the region

(A.41)

This can be written in terms of vII as VT ((311"I'C)1/5 - 1) < vII < VT ((311"I'C)1/5 - 1).

Therefore, particles with vII '" (311"I'C)1/5VT contribute the most to the relaxation

rate. Since the equation for 1, Eq. 2.16, was derived using unperturbed orbits (see

section 2.3.1), it will be valid only if rejb' > 1 where b' = e2j(mv?(311"I'C)2/5)) =

bj(311"I'C)2/5. From this, we conclude that rc/b must be less than about 0.03 in order

for Eq. 2.16 to be a good approximation to 1.

This is not, however, enough to guarantee that Eq. 2.20 is a good approxi-

mation to 1for re/b ~ 0.03. For this equation to be a good approximation, Eq. 2.17

and Eq. 2.18 must also be good approximates to h( 1'C(J"3, 7]) and g( 7]) respectively. It

is now believed [19] these approximations are possibly good only for re/b ~ 10-4•

And, in general, using Eq. 2.20 for 1underestimates the relaxation rate in the region

10-4 ~ re/b ~ O.l.

Finally, carrying out the (J"' integration (here the lower limit of the integral

(i.e. 0) is set to -00) one obtains Eq. 2.20 for 1.

A.6 Three-Body Collision Rate

In this section the three-body collision rate is estimated. This rate becomes

important when re/b <t:: 1, since it may be larger than the relaxation rate. In this

case, the parallel velocity distribution relaxes to a Maxwellian on the three-body

collision time scale, and not the relaxation time scale (i.e. v-I).

Consider a collision between two electrons. If there is no exchange between

parallel and perpendicular velocity components, conservation of energy and conserva-

tion of momentum imply that the parallel velocity components for the two electrons

•
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are not changed by the interaction, or simply interchange (i.e. VI" ~ V2,,). This means

that the distribution of parallel velocity remains unchanged with time.

On the other hand, for a typical collision there will be an exchange of parallel

and perpendicular velocity components. For re/b ~ 1, however, this exchange may

be so small per collision that the parallel velocity relaxes to a Maxwellian on the

three- body collision time scale instead of the relaxation time scale.

If there were no magnetic field, the two-body collision rate would relax the

distribution to a Maxwellian at a rate of about 11' = nb2vT". One expects three-body

collisions to relax the parallel velocity distribution to a Maxwellian at a rate a factor

of the plasma parameter, g, slower than 11'. This estimate then gives the three-body

rate, 113, as

(A.42)

Of course, this is an order of magnitude estimate. Note that 9 is related to the

correlation parameter r by

(A.43)

The above argument is heuristic, and we are not sure that it is correct. Nor

have we been able to find a better argument. One might argue that the factor of

9 that we have introduced into the three-body collision rate should actually be a

factor of r. However, for the parameter regime of interest in this thesis, namely

5 K < T < 100 K, 9 and r are essentially the same (see table A.2).

Table A.2 lists various values of g, r, 11 and 113 for a pure electron plasma

with n = 10ge/cm3 and B = 60kG. Here, 11 is calculated from the O'Neil-Hjorth

theory (i.e. Eq. 2.11 with Eq. 2.20 used to calculate I).



g f v
(Hz)

V3

(Hz)
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100 0.023 0.027 2.7 x 104 1.7 X 104

50 0.065 0.054 6.8 x 103 1.4 X 105

20 0.27 0.14 175 2.3 x 106

10 0.73 0.27 1.2 1.7 x 107

5 2.1 0.54 4.2 x 10-4 1.4 X 108

Table A.2: Various values of g, f, v and V3 for n = 10ge/cm3 and B = 60kG. Here,
v is calculated from the Q'Neil-Hjorth theory.

•

A.7 Joule Heating when n(r, t) = n(r/x(t))/x2(t)

(A.44)

In section 4.3.1 we calculated the rate of change of the electrostatic energy

per unit length for a plasma which is expanding radially. In that calculation we used

a density profile that is uniform; that is, n(t) is independent of raduis for r < rp(t),

and is zero for r > rp( t). Note, to conserve electrons n( t)r;( t) = const. In this

section we calculate the rate of change of the electrostatic energy per unit length for

a more general density profile, n(r, t) = no(r/x(t))/x2(t) where no(r) = n(r, t = 0)

(we assume that the total number of electrons is conserved, hence the factor x2 (t)).

Here, an electron initially at a radius r is at position r / x( t) a time t later, and

x(O) = 1. Note that the uniform density used in section 4.3.1 is a special case of this

more general density profile. Again, we assume that the plasma is infinitely long and

inside a grounded, perfectly conducting cylinder of radius Rw•

We begin this calculation by writing the electrostatic potential energy per

unit length, PE, in terms of the electric field, E,

iRw E2
PE = 211" -rdr.

o 811"

The rate of change of P E is

d(PE) =!. rRw E. dE rdr.
dt 2 io dt

(A.45)
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The electric field is calculated from the density as

() -41l"e far , d ' AE r = -- nr r r.
r 0

The rate of change of the electric field is

dE( r) -41l"e dU; n r' dr') A

-- = --.-----r
dt r dt '

where

dU; n r' dr') dU; nO(r'/x(t))/X2(t) r'dr') dx/dt----- = ---------- = -2nr--.& & x

Here we have used the fact that n = n(r, t) = no(r/x(t))/x2(t).

We can now write Eq. A.45 as

Note that the integral over r can be written as

rRw ( r ) rRw dQ Q2(R )
Jo rn Jo n(r') r'dr' dr = Jo dr Q dr = 2 w

(A.46)

(A.47)

(A.48)

(A.49)

(A.50)

where Q(r) = J; n(r') r' dr'. Writing Q in terms of the number of electrons per unit

length, Np, one obtains

(A.51)

as a simple expression for the rate of change of the electrostatic energy per unit

length.

Equation A.51 is the same as Eq. 4.20 as long as (dn/dt)/n is e.valuated at

the radial origin. To show this let us calculate (dn/dt)/n at the radial origin,

x
2

d (no(r/x)) I
no( r / x) dt x2 r=O

_x2 dx [(d(no(r/x))) !-+ 2no(r/X)] I
no(r/x) dt d(r/x) x2 x3 r=O
-2dx
x dt' (A.52)

Substituting this into Eq. A.51 yields Eq. 4.20.
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In this section, the experimental relaxation rate data is given as well as other

relevant data. The actual experimental setup (i.e. the potentials on the confinement

gates) is presented.

Table A.3 lists the data for B = 61.3 kG, Table AA lists the data for B =

40.9 kG, and Table A.5 lists the data for B = 30.7 kG. In each of these tables we

have included the following:

To ...The temperature at the beginning of the first heating cycle. Also, when

the compressional heating power balances the cyclotron cooling power, the

temperature at the beginning of each heating cycle will be To.

(J ••• measured relaxation rate. (J = 27r f /3 where f is the oscillating frequency

which produces the most heating.

re/b ...calculated from To and B.

t~/Tr ... t~ is the time during each heating set when the heating cycles are turned

off, and Tr is the radiation time. t~ is calculated as t~ = ts - Ne/ f where f

is the frequency which produced the most heating. From this, the maximum

temperature achieved by a plasma during a heating set can be estimated as

Tmax ~ To(1 + exp(t~/Tr)).

(Jt~ .•• gives the approximate number of relaxation times, V-I, for which the heating

is off during a heating set. When vt~ ~ 1, the time t~ allows the distribution

to relax to a Maxwellian before the next set of heating cycles is applied.

t' ...an experimental estimate for the amount of fractional plasma length mod-

ulation which occurs during the heating phase (i.e. 81/1), which, it is hoped,

gives a good estimate to t in Eq. 5.3. Here, t' is estimated by balancing the
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peak heating power (i.e. setting f3 = 1 in Eq. 5.39) with the radiation power,

(;'= v9ts/(47rNeTr).

bV ... the modulated potential amplitude (see Eq. 5.5).

To 11 re/b t~/Tr lit' (;' bVr
(K) (kHz) (%) (%) (V)

11051.0 4.5 256 2.4 19 6.3 14.4
9012.8 6.0 188 2.4 13 5.3 12.0
7204.2 8.3 135 8.0 68 5.5 12.4
5714.7 11.5 95 1.9 11 3.7 8.60
5626.1 13.4 92 11 154 5.5 12.5
4733.4 15.7 71 3.6 24 3.7 8.50
3973.2 17.8 55 2.3 47 3.8 9.20
3727.2 20.7 50 4.8 106 3.7 8.40
2917.1 28.7 34 5.8 179 3.7 8.40
1857.6 46.1 17.6 2.2 114 2.3 2.45
1044.0 83.8 7.4 3.1 294 2.3 5.08
627.8 134.0 3.5 0.3 40 1.1 2.70
571.0 134.0 3.0 3.7 560 2.6 5.64
305.3 142.4 1.2 3.7 600 2.6 5.50
152.2 83.8 0.41 1.3 120 2.4 4.92
95.5 32.5 0.21 2.0 75 2.6 13.8
90.3 28.3 0.19 6.2 200 4.0 7.20
80.8 26.2 0.160 1.1 31 2.4 5.28
60.2 12.4 0.103 5.0 70 4.0 7.60
45.6 6.7 0.068 5.3 40 4.8 10.1
38.7 3.0 0.053 2.5 8 7.4 10.8
27.5 0.9 0.032 1.2 1 12 13.8

Table A.3: Relaxation rate, 11, and other relevant data for B = 61.3 kG

All of the relaxation data was taken with the same unmodulated gate poten-

tials. The following gates and end collectors are shown in Fig. 3.3. The potential

on G1 to Gs was set to -60 V. The modulated gate was G6 and, the unmodulated

potential on it was set to - 23V. The potential on G7 was set to 0V and the potential

on Gs was set to -80 V. The potential on R2 to Rs was set to 80 V and the potential



on R1 was set to 103 V.

150

•



"

•
To v re/b t~/Tr vt' (;' 8Vr
(K) (kHz) (%) (%) (V)

10922.0 3.7 377 1.1 10 4.7 7.40
7430.4 6.6 211 1.0 17 3.5 5.64
5160.0 12.8 122 0.5 17 2.5 60.4
5065.4 9.9 119 0.2 5 2.5 4.00
3537.2 20.9 69.4 0.7 38 2.1 3.19
3517.4 18.8 68.8 0.6 44 1.8 4.80
3440.0 25.6 66.6 0.6 28 1.4 4.48
2339.2 38.7 37.3 0.5 49 2.1 3.30
2322.0 34.6 36.9 0.6 55 1.6 2.22
1671.8 50.3 22.6 0.6 82 1.3 1.92
1032.0 94.2 10.9 0.3 62 1.0 1.38
725.8 121.5 6.45 0.4 114 1.0 1.36
490.2 140.3 3.58 0.2 72 0.8 1.02
375.8 199.0 2.40 0.4 204 0.8 1.04
259.7 203.2 1.38 0.4 212 0.8 1.02
184.0 194.8 0.82 0.4 196 0.8 1.01
123.8 169.6 0.46 0.3 148 0.8 1.06
76.5 77.5 0.22 0.2 30 1.0 1.30
54.2 37.7 0.13 0.8 84 1.7 1.78
39.6 10.5 0.082 2.5 70 4.2 3.50

Table A.4: Relaxation rate, v, and other relevant data for B = 40.9 kG
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To 11 re/b t~/Tr lit' €' 8Vr

(K) (kHz) (%) (%) (V)
7860.4 6.7 307 0.8 26 2.7 4.56
2808.8 24.7 65.5 0.3 40 1.3 2.20
894.4 121.5 11.8 0.2 122 0.7 1.15
464.4 209.4 4.4 0.1 124 0.5 0.76
341.4 224.1 2.8 0.1 152 0.5 0.65
256.3 261.8 1.8 0.2 224 0.5 0.592
168.6 272.3 0.96 0.2 244 0.5 0.625
126.4 272.3 0.63 0.2 244 0.5 0.625
85.1 157.1 0.35 0.1 102 0.5 0.75
72.2 83.8 0.27 0.2 202 0.8 1.07
61.9 67.0 0.21 0.7 222 1.2 1.25
49.9 41.9 0.16 0.5 102 1.2 1.30

Table A.5: Relaxation rate, 11, and other relevant data for B = 30.7 kG
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A.9 Frequently Used Symbols and Units
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•

All of the formulas in this thesis are in Gaussian units (information about

Gaussian units can be found in reference [7]). The following table describes some of

the symbols used in this thesis.

We use the following definitions for Til and Tl.;

(A.53)

(A.54)

SYMBOLS

********** Energies **********

(n + 1/2)1i!1

**********

energy parallel to magnetic field
energy perpendicular to magnetic field
plasma temperature
temperature parallel to magnetic field
temperature perpendicular to magnetic field
experimental apparatus wall temperature
Energy of an electron in the nth.. Landau level

Frequencies and Times **********
n eB/(me)
WR (see Eq. 3.10)

wp J47rne2/m
11

113

Tlifetime n (dn(r = O)/dt)-l
Tr

electron gyrofrequency
plasma rotation rate

electron plasma frequency

electron-electron anisotropic temperature re-
laxation rate
three-body electron-electron collision rate
plasma lifetime
energy e-fold time for a electron plasma cool-
ing via cyclotron radiation when 11 ~ Tr-

1
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SYMBOLS continued ..,.
********** Velocities ********** ..

vII electron velocity parallel to magnetic field
Vl. electron velocity perpendicular to mag-

netic field

VT JkBT/m electron thermal velocity

VTII JkBT'u/m electron thermal velocity parallel to mag-
netic field

VTJ. JkBTl./m electron thermal velocity perpendicular to
magnetic field

u V2 - VI relative velocity between two electrons

ull component of u parallel to magnetic field
uOIl

ull when the electrons are not interacting

********** Others **********
f(x, V, t) distribution function

n density
N1 jn(r,z)dz number of electrons on a field line at radius

r
V electric potential (generally due to confine-

ment gates)

</> electric potential (generally due to space
charge)

E electric field
B magnetic field
B IBI magnitude of magnetic field
1 1I/(nb2vlI) .>t

t

A log(Pmax/b) Coulomb logarithm

..
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SYMBOLS continued
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"
**********

AD JkBT / 411"ne2

b e2/(kBT)
bll 4e2/(mu611)

p vJ../D.
re VT/D.
p

Pmax ~ AD, for re > AD ~ b,
~ re, for AD > re ~ b

Lengths **********
Debye length

classical distance of closest approach
distance of closest approach that two elec-
trons with initial relative velocity uOIl can
obtain
electron gyroradius
thermal electron gyroradius
impact parameter
Coulomb cutoff distance

radius of gates
radius of plasma
length of plasma

**********
9-1 (411"/3) nAb
r (e2 / kBT)( 411"n/3)1/3
K V2D.b/VTII

(7' vlI/(V2vTII)
Tf p/bll
E

Dimensionless **********
number of particles in a Debye sphere
correlation parameter

Note that, for 71, = T1., then VTII = VTl. ,
and K = Y2b/re

1/2 ratio of maximum plasma length vari-
ation (due to the modulated confinement
gate potential) to plasma length
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