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Abstract. Atoms formed in highly-magnetized, cryogenic Penning plgsmas, such as those used
in the Athena and ATRAP antihydrogen experiments, form ia gluiding-center atom regime.
In this regime, the positron orbit is well described by deaisguiding-center drift dynamics.
Electromagnetic radiation from such atoms is minimal, amergy loss is accomplished primarily
through collisions between the atom and free positronsh \Wikker-Planck theory and Monte-
Carlo simulation, we calculate the mean energy change amdsis of such atoms experiences after
the atom has been formed. Using this result, we show thatttkeobhatoms formed in antihydrogen
experiments do not relax out of the guiding-center regimigiding energies where radiation can
become important.
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Current antihydrogen formation experiments pass antythrough a cryogenic
positron plasma contained in a Penning trap [1, 2]. Boungbeotbn-positron pairs are
expected to form by three-body recombination, which sciesrably with decreasing
temperature. The three-body recombination rate has béeuwlai@d previously [3, 4] as

R;~ 0.07n°0° O T 92 (1)

wheren and T are the positron plasma density and temperature, resphgtiv=
/KT /me is the positron thermal speed, ame- €2 /KT is the classical distance of closest
approach. What is meant by “recombination” in this caseaddinmation of bound pairs
at binding energiefJ | of a fewkT. Let us define
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At € =~ 4, known as the kinetic bottleneck energy, atoms are unlit@lbecome re-
ionized by thermal collisions and should eventually casdadhe ground state. We are
concerned here with the rate of this cascade. We will addhesguestion primarily by
calculating the mean energy-loss rate atoms will expegeigiven binding energies.
We use a Fokker-Planck theory for large impact parametéisiaois, in which binding
energy changes are small, and address collisions at alcirppaameters with a Monte-
Carlo simulation.

At cryogenic temperatures, the kinetic bottleneck bindingrgy is only a few meV,
corresponding to a quantumnumber of about 30 to 35. At this high excitation level,
atom orbits are well described with classical equations ofiom. For guiding-center
atoms, the positron’s motion is integrable, described by@egosition of cyclotron,



FIGURE 1. A guiding-center atom. The positrdf x B drifts in the electric field of a stationary
antiproton while oscillating back and forth along the magrféeld in the potential well of the antiproton,
and performing cyclotron motion.

bounce andE x B drift motion. Each motion is periodic and described by a saipia
action-angle pair. The frequencies of these periodic mstioe. cyclotron, bounce, and
drift (Qc, w,, andwy, respectively), obey the following ordering in guiding-tematoms:

Q¢ > ;> Wy 2)

Figure 1 shows one such guiding-center drift atom.
Let us re-scale all frequencies as
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The bounce and drift frequencies andwy scale as
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Whene approachef)g/s, all frequencies converge dd¢ and the ordering of EQ. (2)
breaks down. At or near this energy, the positron orbit bexoohaotic. Fig. 2 shows
one such chaotic atom.

The three oscillatory modes in the guiding-center atom éagk an associated action.
Considering only the guiding-center coordinates and igigophase, the axial bounce
actionl; and the drift actior, fully specify an orbit. In the chaotic regime, the only



FIGURE 2. A chaotic atom. The three oscillation frequendgs w,, andw, are comparable, so energy
is shared between degrees of freedom. The canonical amgataentunmp, and total energy are the only
constants of the motion.

constants of the motion are the total enetggnd the canonical angular momentyg

Note that, givena(% = 0, we havd = 2mp, for the drift orbit action.

Possible mechanisms for energy loss from guiding-centensiinclude electromag-
netic radiation and collisions with free positrons. Thenstlyift orbit of a guiding-center
atom emits very little radiation, so the cascade to deepitgnid accomplished through

atom-positron collisions. If this cascade gets the atonn theechaotic regime > fzﬁ/?’,
radiation takes over as the dominant energy-loss mechanistn theory and simula-
tion, we show that an average atom takes tens of collisioagito reach the chaotic
regime. Since the atoms, untrapped due to their neutragehare expected to remain
within the plasma for only a few collision times, most atomdl escape the trap in
a highly-excited state. However, simulation data sugdesdtsome small fraction may
reach the chaotic regime within one collision time. Work taqtify this result is cur-
rently underway.

The simulation consists of repeated, independent calissad thermal positrons with
a guiding-center atom of binding energy. In each run, the atom is set up in a given
realization ofe = gg. First r is chosen with probability?(r) O r/w,. Then, thez-
axis position is chosen with probabilitgam(2) O 1|V,(€o,f,2)|. The sign of y (the
magnitude of which is already determined) is chosen withakeguobability to be
positive or negative. The impacting positron’s radius andl@arelative to the guiding-
center atom orbit are chosen with equal probability for ¢quea, with radius restricted
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FIGURE 3. The dimensionless diffusion coefficieDt,, = W;th’ averaged ovepy, is shown for

Q=200 andQ:=1000. The line is the theory from Ref. [5] and the points ammants taken from the
simulation. Simulation points are also shown iy, for which no adequate theory exists.

to 0 < rp < 10/go. Its velocity is chosen from the distributidf,(V;) O |\72|e*‘7§/2.
This prescription produces a physical sampling of collisibetween a thermal positron
plasma and an atom of given initial binding enesgy The collision is run using drift
dynamical equations of motion unless any two of the threeggdsanvolved come within

a distance of B/ QE/ 3 Inthis case, cyclotron dynamics are expected to be imppad
the simulation switches over to the full Newtonian equatiohmotion. The initial and
final configurations of around tollisions were recorded at a sampling of binding
energies fo€; = 1000 and 200.

Let us first consider collisions with an impact parameter Imlacger than the atom
size. Each such collision makes only a small change to atambital parameters,
SO0 we can treat the energy-loss process with Fokker-Plamary. We confine the
analysis to guiding-center atoms, for which collisionatkgyy loss dominates. Consider
an ensemble of guiding-center atoms, with distributioncfion f(pg, |,), undergoing
a diffusive walk in the two orbital parametets and p, down the electric potential
gradient. The Fokker-Planck equation, combined with arstéin relation, gives the

flux [6].
0 of . 0 of
Mo = Dpo(gef-gu) o M, = Dy(SEf-3) (4)

Dy, is readily calculated theoretically given the simple, eiez nature of thep orbit
(see Ref. [5]). The bounce motion, however, is anharmonit the diffusion coefficient
Dy, is much more difficult to determine. But, since theoordinate oscillation is much
faster than thd= x B drift motion in @, I is an adiabatic invariant. Therefore, we let
[, = 0. This argument breaks down if the frequenaigsand wy, are comparable, but
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FIGURE 4. The energy-loss rate for three magnetic field strengthsypeterized b@c.

for sufficiently high magnetic field our ordering holds trise¢ Fig. 3).

Figure 3 shows the theoretical diffusion coefficient givanRef. [5], along with
points calculated from the Monte-Carlo simulation. In theding-center regimeD
decreases exponentially withas w, becomes large compared to the mean coITision
timescale b, and an adiabatic invariant comes into play (Ref. [5]). Dhevalues from
the simulation verify a posteriori that this diffusion cheient is small compared Oy,
Note that, at large, theDp, measured in the simulation does not drop off exponentially
as expected from the theory This is because, near the chaaff (€ = 100 for
Q. = 1000 ande = 34.2 for Q. = 200), the cyclotron frequenc§. takes over as the
relevant frequency of motion. Since this frequency is camstthe diffusion coefficient
is roughly constant as well.

We also obtain the energy-loss rate for a given binding gngyrom the simulations.
Figure 4 shows the mean energy-loss rate from all collisibhge Q; = « case scales
with atom cross section, but cyclotron dynamics create aersomplicated scaling in
the other two cases. In particular, for finite magnetic fi¢he, rate does not vary much
with magnetic field (throug&y). In practice, the collision frequency, by whidb/dt is
normalized, sets the time scale for relaxation.

Figure 5 shows the time evolution of two atoms (ATRAP and Athplasma parame-
ters) given a fit to the collisional energy-loss rate showRig 4 added to an estimated
radiative loss rate. To estimate radiative energy loss,ave veraged the classical Lar-
mor radiative power over the energy surface, assuming tizatlar momentunp, takes
its average value for the given binding energy. The detdithie procedure will be de-
scribed in a forthcoming paper. Sin€g = 38.9 for Athena and. = 474 for ATRAP,
our collisional energy-loss data are more applicable tdatex experiment. For the es-
timated evolutions shown, we rely on tig = 200 data points. For the most optimistic
estimate of atom transit time, during which the atom cahwtidlergo collisional energy
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FIGURE 5. An estimated time evolution of an average guiding-centemain the Athena plasma (a)
and an ATRAP plasma (b). The dotted curve is the evolutiontdwellisions only. The evolution shows
radiation becoming important aroundi€Xor Athena, and 300s for ATRAP. The edge of the chaotic
regime U, is estimated with a dashed line.

loss, we assume the antiproton is near the positron thepeably 15K for Athena, 4.2K
for ATRAP). Then the transit time in the Athena plasma is lestw03usand 2us For
ATRAP, the time is approximately.Dus This is not enough time in either case for most
of the atoms to reach the chaotic regime.

However, our simulations indicate that a small fractionrad particles do reach the
chaotic regime quickly. Work is underway to quantify thectran of atoms that reach a
radiating regime. Once in this regime, an atom is expectedl&x to the ground state
quickly.

ACKNOWLEDGMENTS

The authors thank Profs. C. F. Driscoll and T. M. O’Neil foretid discussions. This
work was supported by National Science Foundation GranP\tY.0354979.

REFERENCES

M. Amoretti, C. Amsler, G. Bonomi et aBhys. Rev. Let®1, 055001 (2003).

G. Gabrielse, N. S. Bowden, P. Oxley et Bhys. Rev. LetB9, 233401 (2002).

Michael E. Glinsky and Thomas M. O’NeRhys. Fluids B3, 1279 (1991).

F. Robicheaux and J. D. Hansétys. Rev. A9, 010701 (2004).

E .M. Bass and D. H. E. Dubi®hys. Plasmasl240 (2003).

Frederick ReifFundamentals of statistical and thermal physiRkEGraw-Hill, New York, 1965, p.
567.

ouhwnpE



