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Abstract. Atoms formed in highly-magnetized, cryogenic Penning trapplasmas, such as those used
in the Athena and ATRAP antihydrogen experiments, form in the guiding-center atom regime.
In this regime, the positron orbit is well described by classical guiding-center drift dynamics.
Electromagnetic radiation from such atoms is minimal, and energy loss is accomplished primarily
through collisions between the atom and free positrons. With Fokker-Planck theory and Monte-
Carlo simulation, we calculate the mean energy change an ensemble of such atoms experiences after
the atom has been formed. Using this result, we show that the bulk of atoms formed in antihydrogen
experiments do not relax out of the guiding-center regime tobinding energies where radiation can
become important.
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Current antihydrogen formation experiments pass antiprotons through a cryogenic
positron plasma contained in a Penning trap [1, 2]. Bound antiproton-positron pairs are
expected to form by three-body recombination, which scalesfavorably with decreasing
temperature. The three-body recombination rate has been calculated previously [3, 4] as

R3 ≈ 0.07n2 v̄b5 ∝ T−9/2, (1)

where n and T are the positron plasma density and temperature, respectively, v̄=
√

kT/me is the positron thermal speed, andb= e2/kT is the classical distance of closest
approach. What is meant by “recombination” in this case is the formation of bound pairs
at binding energies|U | of a fewkT. Let us define

ε =
|U |

kT
.

At ε ≈ 4, known as the kinetic bottleneck energy, atoms are unlikely to become re-
ionized by thermal collisions and should eventually cascade to the ground state. We are
concerned here with the rate of this cascade. We will addressthe question primarily by
calculating the mean energy-loss rate atoms will experience at given binding energies.
We use a Fokker-Planck theory for large impact parameter collisions, in which binding
energy changes are small, and address collisions at all impact parameters with a Monte-
Carlo simulation.

At cryogenic temperatures, the kinetic bottleneck bindingenergy is only a few meV,
corresponding to a quantumn number of about 30 to 35. At this high excitation level,
atom orbits are well described with classical equations of motion. For guiding-center
atoms, the positron’s motion is integrable, described by a superposition of cyclotron,
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FIGURE 1. A guiding-center atom. The positronE × B drifts in the electric field of a stationary
antiproton while oscillating back and forth along the magnetic field in the potential well of the antiproton,
and performing cyclotron motion.

bounce andE×B drift motion. Each motion is periodic and described by a separable
action-angle pair. The frequencies of these periodic motions, i.e. cyclotron, bounce, and
drift (Ωc, ωz, andωφ respectively), obey the following ordering in guiding-center atoms:

Ωc > ωz > ωφ. (2)

Figure 1 shows one such guiding-center drift atom.
Let us re-scale all frequencies as

ω̂ =
bω

v̄
.

The bounce and drift frequenciesωz andωφ scale as

ω̂z ≈ ε3/2

ω̂φ ≈ ε3

Ω̂c

(3)

Whenε approacheŝΩ2/3
c , all frequencies converge on̂Ωc and the ordering of Eq. (2)

breaks down. At or near this energy, the positron orbit becomes chaotic. Fig. 2 shows
one such chaotic atom.

The three oscillatory modes in the guiding-center atom eachhave an associated action.
Considering only the guiding-center coordinates and ignoring phase, the axial bounce
action Iz and the drift actionIφ fully specify an orbit. In the chaotic regime, the only
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FIGURE 2. A chaotic atom. The three oscillation frequenciesΩc, ωz, andωφ are comparable, so energy
is shared between degrees of freedom. The canonical angularmomentumpφ and total energy are the only
constants of the motion.

constants of the motion are the total energyU and the canonical angular momentumpφ.

Note that, given
∂pφ
∂t = 0, we haveIφ = 2πpφ for the drift orbit action.

Possible mechanisms for energy loss from guiding-center atoms include electromag-
netic radiation and collisions with free positrons. The slow drift orbit of a guiding-center
atom emits very little radiation, so the cascade to deep binding is accomplished through

atom-positron collisions. If this cascade gets the atom near the chaotic regimeε >
∼ Ω̂2/3

c ,
radiation takes over as the dominant energy-loss mechanism. With theory and simula-
tion, we show that an average atom takes tens of collision times to reach the chaotic
regime. Since the atoms, untrapped due to their neutral charge, are expected to remain
within the plasma for only a few collision times, most atoms will escape the trap in
a highly-excited state. However, simulation data suggest that some small fraction may
reach the chaotic regime within one collision time. Work to quantify this result is cur-
rently underway.

The simulation consists of repeated, independent collisions of thermal positrons with
a guiding-center atom of binding energyε0. In each run, the atom is set up in a given
realization ofε = ε0. First r is chosen with probabilityP(r) ∝ r/ωz. Then, thez-
axis position is chosen with probabilityPatm(ẑ) ∝ 1|v̂z(ε0, r̂, ẑ)|. The sign of vz (the
magnitude of which is already determined) is chosen with equal probability to be
positive or negative. The impacting positron’s radius and angle relative to the guiding-
center atom orbit are chosen with equal probability for equal area, with radius restricted



FIGURE 3. The dimensionless diffusion coefficientD̂pφ =
Dpφ

n v̄b2(me v̄b)2 , averaged overpφ, is shown for

Ω̂c=200 andΩ̂c=1000. The line is the theory from Ref. [5] and the points are moments taken from the
simulation. Simulation points are also shown forDIz, for which no adequate theory exists.

to 0 < rp < 10/ε0. Its velocity is chosen from the distributionPp(v̂z) ∝ |v̂z|e−v̂2
z/2.

This prescription produces a physical sampling of collisions between a thermal positron
plasma and an atom of given initial binding energyε0. The collision is run using drift
dynamical equations of motion unless any two of the three charges involved come within

a distance of 2b/Ω̂2/3
c . In this case, cyclotron dynamics are expected to be important, and

the simulation switches over to the full Newtonian equations of motion. The initial and
final configurations of around 104 collisions were recorded at a sampling of binding
energies forΩ̂c = 1000 and 200.

Let us first consider collisions with an impact parameter much larger than the atom
size. Each such collision makes only a small change to atomicorbital parameters,
so we can treat the energy-loss process with Fokker-Planck theory. We confine the
analysis to guiding-center atoms, for which collisional energy loss dominates. Consider
an ensemble of guiding-center atoms, with distribution function f (pφ, Iz), undergoing
a diffusive walk in the two orbital parametersIz and pφ down the electric potential
gradient. The Fokker-Planck equation, combined with an Einstein relation, gives the
flux [6].

Γpφ = Dpφ

(

∂ε
∂pφ

f − ∂ f
∂pφ

)

; ΓIz = DIz

(

∂ε
∂Iz

f − ∂ f
∂Iz

)

(4)

Dpφ is readily calculated theoretically given the simple, circular nature of theφ orbit
(see Ref. [5]). The bounce motion, however, is anharmonic, and the diffusion coefficient
DIz is much more difficult to determine. But, since thez coordinate oscillation is much
faster than theE×B drift motion in φ, Iz is an adiabatic invariant. Therefore, we let
ΓIz = 0. This argument breaks down if the frequenciesωz andωφ are comparable, but



FIGURE 4. The energy-loss rate for three magnetic field strengths, parameterized bŷΩc.

for sufficiently high magnetic field our ordering holds true (see Fig. 3).
Figure 3 shows the theoretical diffusion coefficient given in Ref. [5], along with

points calculated from the Monte-Carlo simulation. In the guiding-center regime,Dpφ
decreases exponentially withε as ωφ becomes large compared to the mean collision
timescale v̄/b, and an adiabatic invariant comes into play (Ref. [5]). TheDIz values from
the simulation verify a posteriori that this diffusion coefficient is small compared toDpφ .
Note that, at largeε, theDpφ measured in the simulation does not drop off exponentially
as expected from the theory. This is because, near the chaotic cutoff (ε = 100 for
Ω̂c = 1000 andε = 34.2 for Ω̂c = 200), the cyclotron frequencyΩc takes over as the
relevant frequency of motion. Since this frequency is constant, the diffusion coefficient
is roughly constant as well.

We also obtain the energy-loss rate for a given binding energy ε0 from the simulations.
Figure 4 shows the mean energy-loss rate from all collisions. The Ω̂c = ∞ case scales
with atom cross section, but cyclotron dynamics create a more complicated scaling in
the other two cases. In particular, for finite magnetic field,the rate does not vary much
with magnetic field (througĥΩc). In practice, the collision frequency, by which∂ε/∂τ is
normalized, sets the time scale for relaxation.

Figure 5 shows the time evolution of two atoms (ATRAP and Athena plasma parame-
ters) given a fit to the collisional energy-loss rate shown inFig. 4 added to an estimated
radiative loss rate. To estimate radiative energy loss, we have averaged the classical Lar-
mor radiative power over the energy surface, assuming that angular momentumpφ takes
its average value for the given binding energy. The details of this procedure will be de-
scribed in a forthcoming paper. SinceΩ̂c = 38.9 for Athena andΩ̂c = 474 for ATRAP,
our collisional energy-loss data are more applicable to thelater experiment. For the es-
timated evolutions shown, we rely on theΩ̂c = 200 data points. For the most optimistic
estimate of atom transit time, during which the atom can still undergo collisional energy



FIGURE 5. An estimated time evolution of an average guiding-center atom in the Athena plasma (a)
and an ATRAP plasma (b). The dotted curve is the evolution dueto collisions only. The evolution shows
radiation becoming important around 10µs for Athena, and 300µs for ATRAP. The edge of the chaotic
regime,Uc, is estimated with a dashed line.

loss, we assume the antiproton is near the positron thermal speed (15K for Athena, 4.2K
for ATRAP). Then the transit time in the Athena plasma is between 0.3µsand 2µs. For
ATRAP, the time is approximately 0.1µs. This is not enough time in either case for most
of the atoms to reach the chaotic regime.

However, our simulations indicate that a small fraction of the particles do reach the
chaotic regime quickly. Work is underway to quantify the fraction of atoms that reach a
radiating regime. Once in this regime, an atom is expected torelax to the ground state
quickly.
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