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Abstract. We present a 1D theory, neglecting radial dependency, for the damping of cylindrically
symmetric plasma modes due to a cylindrically symmetric squeeze potentialVsq(z), applied to the
axial midpoint of a non-neutral plasma column. Inside the plasma, particles experience a much
smaller, Debye shielded squeeze potentialϕ0(z) of magnitudeϕs. Squeeze divides the plasma into
passing and trapped particles; the latter cannot pass over the squeeze. Both analytical and computer
simulation methods were used to study a 1D squeezed plasma mode. For our analytical study, in the
regime whereqϕs/T ≪ 1, we assume the trapped particle population to be negligibly small and we
treatqϕ0(z) as a pertubation in the equilibrium hamiltonian. Our computer simulations consist of
solving the 1D Vlasov-Poisson system and obtaining the damping rate for a self-consistent plasma
mode. Damping of the mode in collisionless theory is caused by Landau resonances at energiesEn
for which the bounce frequencyωb(En) and the wave frequencyω satisfyω = nωb(En). Particles
experience a non-sinusoidal wave potential along their bounce orbits due to the squeeze potential. As
a result, squeeze induces bounce harmonics withn≫ 1 in the perturbed distribution. The harmonics
allow resonances at energiesEn ≤ T and cause a substantial damping, even at wave phase velocities
much larger than the thermal velocity, which is not expectedfor unsqueezed plasma. In the regime
ω/k ≫

√

T/m (k is the wave number) andT ≫ qϕs, the resonance damping rate has a|Vsq|
2

dependence. This behavior is consistent with the observed experimental results.
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INTRODUCTION

Trivelpiece-Gould modes are plasma modes which are modifiedby the cylindrical con-
finement geometry of the trap. Experiments have been performed on the effect of an
externally applied cylindrically symmetric electrostic potential(squeeze potential), on
the damping ofl = 0(azimuthally symmetric)m= 1 Trivelpiece-Gould modes, in a thin
and long finite length plasma. In the absence of squeeze, for aplasma of radiusrp and
lengthL, contained in a perfectly conducting cylinder of radiusrw, we have the following
dispersion relation up to the lowest order thermal correction [1]:

ω ≈ ωp
km
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(1)

The above equation employs the following notation: mode frequency ω, plasma
frequency ωp =

√

4πq2n0/mq, density n0, particle chargeq, particle massmq,
phase velocityvph = ω/km, thermal velocityvT =

√

T/mq, radial wave number

k⊥ ≈ (rp)
−1
√

2
log(rw/rp)

and axial wave numberkm = πm/L.



FIGURE 1. Schematic depiction of the experimental setup.

We present a 1D model theory for squeezed Trivelpiece-Gouldmodes, which includes
a self-consistent treatment of mode potential in the presence of a 1D squeeze potential
acting as a kinetic barrier for the bounce motion of particles along the plasma axis. Fig-
ure (1) demonstrates the confinement geometry used in the experiments. The plasma
is confined in a Malmberg-Penning trap consisting of a conducting cylinder, axially
divided into a number of sections. Axial confinement is provided by applying an elec-
trostatic potential+V(for ions) to the end sections. Radial confinement is providedby a
strong uniform magnetic fieldB directed along the axis of cylinder. The plasma resides
in the inner conducting sections, which are grounded.

The middle section of the trap is divided into two parts, c1 and c2. Trivelpiece-Gould
modes are excited by applying a sinusoidal voltage to cylindrical sector c1. On a separate
electrode which works as an antenna, voltage is measured. This voltage is induced by the
wave density perturbationδn. Damping of the excited wave is directly measured from
the decay rate of the receiving signal. Damping of a small amplitude wave is expected to
be exponential in time. Next, a squeeze potential is appliedto cylindrical sector c2,
for a time interval of≈ 10 ms, during which damping of the wave is substantially
enhanced. Turning off the squeeze potential lowers the damping rate to a small value,
which is however greater than the value it had preceeding theapplication of squeeze.
This can be explained by the heating of plasma as the wave is damped. Experiments were
performed on TG modes with phase velocities much greater than the thermal velocity.
In such conditions, Landau damping of the mode in the absenceof squeeze is expected
to be negligibly small. However, the damping rate of the TG modes shows a square
dependence on the magnitude of the applied squeeze. This behavior was observed over
a relatively large temperature range(T = 10K−1000K). In hotter plasmas the damping
rate of the mode due to squeeze was more enhanced compared to the colder plasmas.



MODEL

We make a few appoximations and simplifications to come up with a tractable theoretical
model. We assume that the squeeze potential is symmetric inz with respect to the
center of plasma. This is not the case in the experiments, however this added symmetry
simplifies the problem. Density and potential inside the equilibrium plasma are functions
of r andz. We neglect radial variation for simplicity and we assume plasma ends are flat
and that particles undergo specular reflection at the ends, at z= ±L/2. Similar to the
experiments, dimensions of plasma and trap are ordered asrp ≤ rw ≪ L. In this range of
parameters we can see from (1) thatω ≪ ωp. Furthermore, time scale ordering is chosen
in accordance with the experiments. For the case of azimuthally symmetric modes in a
strong magnetic field we have the following ordering for the time scales:

νcol ≪ ω ≪ ωp ≪ ωc (2)

Here,νcol is the collision frequency andωc = qB/mqc is the cyclotron frequency. In a
strong magnetic field the distribution of particle guiding centers is described by drift-
kinetic equations. Particle motion consists ofE×B drift motion across magnetic field
and streaming along the magnetic field inz direction. For a cylindrically symmetric
mode the time evolution of linear pertubations is given by 1DVlasov equation:

∂tδf +v∂zδf−
q

mq
∂zϕ0∂vδf−

q
mq

∂zδϕ∂vF0 = 0 (3)

wherev is velocity in axial(z) direction, F0 is the equilibrium distribution function,ϕ0
is the equilibrium potential, andδϕ is the mode potential perturbation.

Equilibrium density and potential of a squeezed plasma are functions of bothr and
z, and as a result mode potential is also a function of both of these coordinates. Effect
of radial confinement on the finite length plasma modes was studied by Prasad and
O’Neil [2], in which linear modes were calculated as a first order perturbation inrp/L
and it was shown that zero’th order modes will become coupleddue to finite radius
effect and there will be corrections to damping rate of the mode. Adding squeeze to the
problem has similar effects on the eigenmode and its dampingrate. In order to focus
on the effect of squeeze on the modes, as a simpler more tractable model, we consider
a 1D plasma(i.e zero’th order inrp/L) with a z dependent squeeze potential given by
Vsq(z). Nevertheless, we keep a radial wave numberk⊥ as a system parameter in order
to maintain some effect of radial confinement on plasma modes(Debye sheilding due to
k⊥). The Hamiltonian of the equilibrium state of plasma is given by

H0 = mqv2/2+qϕ0(z) (4)

ϕ0(z) is the Debye shielded squeeze potential inside the plasma with maximum value
ϕs at the center of plasma. Hence,ϕ0(z) is the sum of the externally applied squeeze
potentialVsq(z) and the response of the plasma to the external potentialϕpe(z).

ϕ0(z) =Vsq(z)+ϕpe(z) (5)

Passing particles have energiesE > ϕs and travel the whole length of the plasma in their
bounce motion. These particles slow down when they climb up the kinetic barrierqϕ0(z)



and speed back up as they go down the kinetic barrier. Particles with energiesE < ϕs
are trapped on left or right side ofqϕ0(z) and cannot cross over to the other side. We are
interested in the regime whereqϕs≪ T. In this regime the trapped particle population is
very small compared to the passing particle population and the effects we are concerned
with are mainly due to passing particles. Therefore we neglect the trapped particles. The
equilibrium distribution F0(z,v) is given by the Boltzmann distribution:

F0(H0) =
e−

H0
T

√

2πT/mq
∫ L/2
−L/2e−

ϕ0(z)
T d(z/L)

(6)

F0 andϕpe together satisfy Poisson-Boltzmann equation. We are particularly interested
in a case where the squeeze potential is Debye shielded to theextent that the equilibrium
potential energy inside plasma is much smaller than averagekinetic energy i.e.ε =
qϕs/T ≪ 1. In this situation, we can expand to first order inε and get the following
relation:

(−k2
⊥+∂2

z)ϕpe= λ−2
D (ϕ0−〈ϕ0〉) (7)

whereλD =
√

T/4πq2n0 is the Debye length. Hence, from (7) and (5) we can solve
for ϕ0 in terms ofVsq. As a result we can see that the magnitude of the potential inside
plasma is linearly proportional to the magnitude of squeezepotential:

ϕs ∝ |Vsq|, qϕs ≪ T (8)

For a long thin plasma where we haveω ≪ ωp, to the zero’th order inω/ωp, mode
potential is flat at the ends of plasma i.e.∂zδϕ(±L/2)≈ 0 [3]. Therefore, mode potential
can be written as:

δϕ(z, t) =
∞

∑
m=1

e−iωtδφmcos[km(z+L/2)]+c.c., km = mπ/L (9)

Particles perform a periodic bounce motion along their unperturbed orbits and their
canonical action variable is a constant of motion. Thus, in order to simplify our cal-
culations we use canonical action-angle variablesψ andI and for the mode potential we
can write:.

δϕ(ψ, I ; t) =
∞

∑
n=−∞

∞

∑
m=1

δφmCn
m(I)e

i(nψ−ωt)+c.c. (10)

whereCn
m(I) is given by:

Cn
m(I) =

1
2π

∫ 2π

0
e−inψ cos[km(z(ψ, I)+L/2)]dψ (11)

The mode potentialδϕ can be obtained by simultaneously solving 1D Vlasov eq. (3) and
Poisson equation:

(−k2
⊥+∂2

z)δϕ =−4πqn0

∫ ∞

−∞
δf dvz (12)



where the mode perturbation to distribution function is of the form:

δf(z,v; t) = δ f (z,v)e−iωt +c.c. (13)

After performing some algebraic steps on Poisson equation (12) and Vlasov equation
(3), we obtain the dispersion relation which can be written in a complex matrix eigen-
value equation form:

M(ω).a = 0 (14)

where dispersion matrixM and eigenvectora (whose elements are Fourier components
in position space), are given by:

Mm,p(ω) = δm,p+χ−2
m

∞

∑
n=1

Π̂n(ω)Cn
p(I)C

n
m(I) (15)

aT = (δφ1,δφ2, . . .) (16)

whereχ2
n = k2

⊥+k2
n and we define the following short-hand notation:

Π̂n(ω)g(I) =−
4πω2

p

LT

∫

℧

dI

(

ωbF0(E)
ω/n−ωb

−
ωbF0(E)
ω/n+ωb

)

g(I) (17)

where energyE =E(I) through action-angle transformation. Eigenvalues satisfying (15)
are the complex mode frequencies and eigenvectors are the Fourier components ofδϕ(z).
To deal with singularities, all integrals over action variable are to be performed along
Landau contours, i.e. contours drop bellow the poles(as shown by the symbol℧ in the
above integrals). Different Fourier components of the mode(elements of RHS of (16))
are coupled through the non-diagonal elements ofM(ω). Details of this calculation will
be presented in a separate publication.

Treating a small qϕ0(z) compared to T as a perturbation

In order to obtain the eigenvalues, eigenvectors and damping rate of the modes, we
take a peturbative approach. Assuming the parameterε= qϕs/T to be small, the majority
of particles have energies greater thanqϕs and see the potential barrier as a small bump
that gently slows them them down as they move along their bounce orbits. Thus, for
qϕs ≪ E, from perturbation theory we can calculateCn

m(I)’s which have the form:

Cn
m(I) =

1
2

δ|n|,m+αn
m(E) (18)

αn
m(E) ∝ qϕs/E is the first order inε correction due to squeeze effect to the

Fourier components in action-angle space for an orbit with energy E ≫ qϕs where
E ≈ π2I2/2mqL2 + 〈ϕ0〉, and bounce frequencyωb = ∂IE = π2I/mqL2. We have the



following series expansions in terms ofε as small parameter:

M = M0+M1+M2+ . . . (19)
a = a0+a1+a2+ . . . (20)
ω = ω0+ω1+ω2+ . . . (21)

a0,a1,a2 are column vectors andω0,ω1,ω2 are complex eigenfrequencies. Matrices
M0,M1 andM2 are given by:

Mm,p
0 = δm,p

(

1+
1
4

χ−2
m Π̂m(ω)

)

(22)

Mm,p
1 =

1
2

χ−2
m

[

Π̂m(ω)αm
p(E)+ Π̂p(ω)αp

m(E)
]

(23)

Mm,p
2 = χ−2

m

∞

∑
n=1

Π̂n(ω)αn
m(E)α

n
p(E) (24)

Using the relations (19) through (24), we rewrite the dispersion relation (14), collect
the terms of ordersε0,ε1 and ε2 and set the dispersion relation at each order to zero
separately. We are specifically interested in theµ = 1 squeezed mode, i.e. the mode
which is closest to them= 1 unsqueezed mode with spatial dependence cos[k1(z+L/2)].
This is the mode which was used and studied in the experiments. The zero’th order
dispersion relation is given by:

M0(ω0).a0 = 0⇒

(

1+
1
4

χ−2
m Π̂m

)

δφm = 0 (25)

Equation (25) is the dispersion relation of an unsqueezed plasma. SinceM0 is a diagonal
matrix, each Fourier cosine function in (9) is an eigenmode for an unsqueezed plasma.
The zero’th order eigenfrequencyω0 and the eigenvector are obtained by solving (25).
For modeµ= 1 the zero’th order(unsqueezed) eigenvector and the damping rate are:

aT
0 = (1,0,0, . . .) (26)

ωi
0 = −

ImΠ̂1(ω0)

∂ωReΠ̂1(ω0)
(27)

Whenω0/k1vT ≫ 1, the zero’th order damping rateωi
0, which is the Landau damping

of the unsqueezed mode, is exponentially small andω0 = ωr
0. We obtainωi

1 anda1 from
the first order dispersion relation:

ωi
1 = −

4ImΠ̂1(ω0)α1
1(E)

∂ωReΠ̂1(ω0)
(28)

aT
1 = (0,δφ2,δφ3, . . .); δφ j =−

M j,1
1 (ω0)

M j, j
0 (ω0)

, j > 1 (29)

The first order damping rateωi
1 also turns out to be exponentially small, in the regime

whereω0 ≫ k1vT . Thus, both the zero’th order and the first order correction to damping



rate are nearly zero and the dominant behavior of the dampingrate is of second order
with respect to smallness parameterε. Since ε = qϕs/T and for smallε we have
ϕs ∝ |Vsq|, if ω0 ≫ k1vT damping rate will be proportional to|Vsq|

2. This behavior is
in qualitative agreement with the experimental observations.

We obtain the second order damping rate from the second orderdispersion relation.
For ω0 ≫ k1vT we have:

ωi
2 =−

4∑∞
n=1 ImΠ̂n(ω0)(αn

1(E))
2

∂ωReΠ̂1(ω0)
+

4χ4
1

∂ωReΠ̂1(ω0)

∞

∑
j=2

1

χ2
j

Im

[

(M1, j
1 (ω0))

2

M j, j
0 (ω0)

]

The first term on the RHS, which we callγ1, is the contribution to damping rate due to
m= 1 unsqueezed mode(cosine in position space). Particles slow down as they pass the
squeeze and thus, no longer see this mode as a simple cosine along their bounce orbits, as
a function of their angle variables. As a result, them= 1 unsqueezed mode has nonzero
Fourier terms in angle variable space. Particles with bounce frequencyωb = ω/n will
resonantly interact with the n’th Fourier term and thus, enhance the damping rate of the
mode.

Moreover the squeezed eigenmode is a superposition of unsqueezed eigenmodes,
since from (29), elements ofa1 are nonzero. Therefore, the shape of the mode potential
is no longer a simple cosine in position space and consists ofhigher harmonics inz,
which are all oscillating at the same frequencyω. The contribution to the damping rate
given by second term on the RHS of (30), which we callγ2, is due to the damping of
these higher harmonics which are coupled to them= 1 unsqueezed mode. In figure
(2) we compare the damping rate calculated from our compter simulation results to
the analytically calculated damping rates. We chose our parameters in the regimes
where phase velociy was much greater than thermal velocity,so that unsqueezed Landau
damping is exponentially small. For our analytical results, we depicted the contribution
to second order(inε) damping rate fromγ1(circles) andγ2(squares) separately, as well
as the total second order damping rate(diamonds). Computer simulation results are
depicted with triangles. We can see that damping rate resulting from γ2 is, in most parts,
at least an order of magnitude greater than damping rate fromγ1. As the amplitude of
squeeze potential is increased, analytically calculated damping rates become smaller
than the computer simulation results and deviate from square dependence behavior on
|Vsq|

2. This is caused by the fact thatqϕs/T is no longer a small value, and thus our
perturbation method is no longer valid. Also the populationof trapped particles, which
was not accounted for, becomes larger asϕs grows and resonant trapped paticle-wave
interaction becomes significant, further enhancing the mode damping rate.

CONCLUSION

The presence of a squeeze potential results in additional resonant wave-particle inter-
actions at bounce frequenciesωb = ω/n, which enhances the mode damping rate of
Trivelpiece-Gould modes. There are two different reasons for these extra resonances
to be generated: i)The squeeze potential modifies the unperturbed orbits of particles in
such a way that a single cosine wave in position space is seen by the particles (as a func-
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FIGURE 2. Mode damping rate vs. squeeze potential. Analytically calculated damping rate is shown
in terms of the value fromγ1 with circles,γ2 with squares, and their total sumγ1 + γ2 with diamonds.
Computer simulation results is shown with triangles. Dashed black line isf (x) = 10−6∗x2, depicted for
comparison.

tion of time) as perturbed, with higher harmonics with amplitude of orderε = qϕs/T
added to the wave. ii) The shape of mode potential in positionspace is also modified
and contains higher harmonics of amplitudeε. Our analysis shows that in the regime
whereqϕs/T ≪ 1, andω/k1vT ≫ 1, the mode damping rate has a square dependence
on the amplitude of the applied squeeze potential|Vsq|. This behavior is consistent with
the experimental results. We compared our analytical results to computer simulations,
details of which will be discussed in a future publication.
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