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Abstract. We present a 1D theory, neglecting radial dependency, éod#mping of cylindrically
symmetric plasma modes due to a cylindrically symmetricesge potentia¥sq(z), applied to the
axial midpoint of a non-neutral plasma column. Inside thespla, particles experience a much
smaller, Debye shielded squeeze poteniiglk) of magnitudeps. Squeeze divides the plasma into
passing and trapped particles; the latter cannot passtowegtieeze. Both analytical and computer
simulation methods were used to study a 1D squeezed plasiha fRor our analytical study, in the
regime wherajps/T < 1, we assume the trapped particle population to be negligiblall and we
treatqdo(z) as a pertubation in the equilibrium hamiltonian. Our corepsimulations consist of
solving the 1D Vlasov-Poisson system and obtaining the dagmate for a self-consistent plasma
mode. Damping of the mode in collisionless theory is caugeldamdau resonances at enerdias
for which the bounce frequenay,(En) and the wave frequenay satisfyw = nuwy(Ey). Particles
experience a non-sinusoidal wave potential along theinbewrbits due to the squeeze potential. As
aresult, squeeze induces bounce harmonicsmithl in the perturbed distribution. The harmonics
allow resonances at energigs< T and cause a substantial damping, even at wave phase \edociti
much larger than the thermal velocity, which is not expeétedinsqueezed plasma. In the regime
w/k > /T/m (k is the wave number) an@l > q¢s, the resonance damping rate ha$/g?
dependence. This behavior is consistent with the obsexatienental results.
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INTRODUCTION

Trivelpiece-Gould modes are plasma modes which are modifietie cylindrical con-
finement geometry of the trap. Experiments have been peefdrom the effect of an
externally applied cylindrically symmetric electrostiotpntial(squeeze potential), on
the damping of = O(azimuthally symmetricin = 1 Trivelpiece-Gould modes, in a thin
and long finite length plasma. In the absence of squeeze,dtasaa of radius, and
lengthL, contained in a perfectly conducting cylinder of radiyswe have the following
dispersion relation up to the lowest order thermal coroecfi]:

Km 3/vr)?
The above equation employs the following notation: modeyudescy w, plasma

frequency wp = \/41Tno/my, density ng, particle chargeq, particle massmy,
phase velocityvp, = w/km, thermal velocityvr = /T /my, radial wave number

k. = (rp)~t m and axial wave numbe, = Tm/L.



FIGURE 1. Schematic depiction of the experimental setup.

We present a 1D model theory for squeezed Trivelpiece-Guooldes, which includes
a self-consistent treatment of mode potential in the preseha 1D squeeze potential
acting as a kinetic barrier for the bounce motion of pari@dkng the plasma axis. Fig-
ure (1) demonstrates the confinement geometry used in trerimgnts. The plasma
is confined in a Malmberg-Penning trap consisting of a condgaylinder, axially
divided into a number of sections. Axial confinement is pded by applying an elec-
trostatic potentiak-V (for ions) to the end sections. Radial confinement is proviued
strong uniform magnetic fielB directed along the axis of cylinder. The plasma resides
in the inner conducting sections, which are grounded.

The middle section of the trap is divided into two parts, cd eB. Trivelpiece-Gould
modes are excited by applying a sinusoidal voltage to cyiliatisector c1. On a separate
electrode which works as an antenna, voltage is measurexvdltage is induced by the
wave density perturbatiobn. Damping of the excited wave is directly measured from
the decay rate of the receiving signal. Damping of a smalllénde wave is expected to
be exponential in time. Next, a squeeze potential is appbedylindrical sector c2,
for a time interval of~ 10 ms, during which damping of the wave is substantially
enhanced. Turning off the squeeze potential lowers the gempte to a small value,
which is however greater than the value it had preceedingpipdication of squeeze.
This can be explained by the heating of plasma as the wavenp&th Experiments were
performed on TG modes with phase velocities much greatertthethermal velocity.

In such conditions, Landau damping of the mode in the abseihsgueeze is expected

to be negligibly small. However, the damping rate of the TGdewshows a square
dependence on the magnitude of the applied squeeze. Thasibelvas observed over

a relatively large temperature rangje€ 10K — 1000K). In hotter plasmas the damping
rate of the mode due to squeeze was more enhanced compahnecctdder plasmas.



MODEL

We make a few appoximations and simplifications to come ulp avitactable theoretical
model. We assume that the squeeze potential is symmetrzcwith respect to the
center of plasma. This is not the case in the experimentsebenvthis added symmetry
simplifies the problem. Density and potential inside thdldmyium plasma are functions
of r andz. We neglect radial variation for simplicity and we assunaspia ends are flat
and that particles undergo specular reflection at the etids+=atL/2. Similar to the
experiments, dimensions of plasma and trap are ordergg<as,, < L. In this range of
parameters we can see from (1) tha& wp. Furthermore, time scale ordering is chosen
in accordance with the experiments. For the case of azirtythanmetric modes in a
strong magnetic field we have the following ordering for tineet scales:

Veol K 0 < Wp K 0 (2)

Here,v¢ is the collision frequency ana: = qB/myc is the cyclotron frequency. In a
strong magnetic field the distribution of particle guidingnters is described by drift-
kinetic equations. Particle motion consistskok B drift motion across magnetic field
and streaming along the magnetic fieldzmirection. For a cylindrically symmetric
mode the time evolution of linear pertubations is given byMIBsov equation:

9,5 + V0,5 — %azq)oavéf _ %az&pavﬁ, ~0 @)

wherev is velocity in axia(z) direction, F is the equilibrium distribution functiorg
is the equilibrium potential, andl is the mode potential perturbation.

Equilibrium density and potential of a squeezed plasma wametions of bothr and
z, and as a result mode potential is also a function of both egdlcoordinates. Effect
of radial confinement on the finite length plasma modes wadieduby Prasad and
O’Neil [2], in which linear modes were calculated as a firslerperturbation imp/L
and it was shown that zero’th order modes will become couplegl to finite radius
effect and there will be corrections to damping rate of thelend\dding squeeze to the
problem has similar effects on the eigenmode and its danmgitgg In order to focus
on the effect of squeeze on the modes, as a simpler moreliactedel, we consider
a 1D plasma(i.e zero'th order i,/L) with a z dependent squeeze potential given by
Vsq(2). Nevertheless, we keep a radial wave nunibers a system parameter in order
to maintain some effect of radial confinement on plasma m@ds/e sheilding due to
k). The Hamiltonian of the equilibrium state of plasma is gy

Ho = mgv?/2+ do(2) (4)

do(2) is the Debye shielded squeeze potential inside the plastimaméximum value
ds at the center of plasma. Hend(2) is the sum of the externally applied squeeze
potentialVsy(z) and the response of the plasma to the external poterjiat).

$0(2) = Vsq(2) + dpe(2) (5)

Passing particles have energies- ¢s and travel the whole length of the plasma in their
bounce motion. These particles slow down when they climthagkinetic barriegdo(z)



and speed back up as they go down the kinetic barrier. Regtwith energieg < ¢s

are trapped on left or right side gbo(z) and cannot cross over to the other side. We are
interested in the regime whegés < T. In this regime the trapped particle population is
very small compared to the passing particle population he@ffects we are concerned
with are mainly due to passing particles. Therefore we regte trapped particles. The
equilibrium distribution g(z,Vv) is given by the Boltzmann distribution:

Fo(Ho) = (6)

V21T g [ e - 4(z/L)

Fo and¢ pe together satisfy Poisson-Boltzmann equation. We are péatiy interested
in a case where the squeeze potential is Debye shielded éxtitvet that the equilibrium
potential energy inside plasma is much smaller than avekagic energy i.es =
gds/T < 1. In this situation, we can expand to first ordersiand get the following
relation:

(—k% +02)pe = Ap? (9o — ($o)) (7)

whereAp = /T /412ng is the Debye length. Hence, from (7) and (5) we can solve
for ¢o in terms ofVsq. As a result we can see that the magnitude of the potentialens
plasma is linearly proportional to the magnitude of squgextential:

¢sO Vsq, aps<T (8)

For a long thin plasma where we hawe< wp, to the zero'th order irw/wp, mode
potential is flat at the ends of plasma 0gddp (+L/2) ~ 0 [3]. Therefore, mode potential
can be written as:

oP(zt) = g e 5@, cogkm(z+L/2)]+c.c., kn=mm/L 9)
m=1

Particles perform a periodic bounce motion along their uiopleed orbits and their
canonical action variable is a constant of motion. Thus,rotlento simplify our cal-
culations we use canonical action-angle varialjlesdl and for the mode potential we
can write:.

(P, l;t) = i iacpmc” (nY-a) 4 ¢ c. (10)
n=—com=1
whereCj}(1) is given by:
2
Ch(1) = o, [ & "™ coskn(zlu.) +L/2)]dy 1)

The mode potentiadd can be obtained by simultaneously solving 1D Vlasov eq.1(d) a
Poisson equation:

(—K2 +02)3¢ = —4mmno / 5 dv, (12)



where the mode perturbation to distribution function ishef form:
3 (z,v;t) = 5f (zv)e ' +-c.c. (13)

After performing some algebraic steps on Poisson equalidhgnd Vlasov equation
(3), we obtain the dispersion relation which can be writiea icomplex matrix eigen-
value equation form:

M(w).a=0 (14)

where dispersion matri¥ and eigenvectaa (whose elements are Fourier components
in position space), are given by:

M™P(@) = Bmp+ X2 3 An(@ICHCA() (15)
n=1
al = (3¢1,59;,...) (16)

wherexZ = k2 + kZ and we define the following short-hand notation:

Mn(w)g(l) = LT J w/nN—wy W/N+ oy
where energ¥ = E(1) through action-angle transformation. Eigenvalues satigf(15)
are the complex mode frequencies and eigenvectors are tineeFcomponents aid (z).
To deal with singularities, all integrals over action vateare to be performed along
Landau contours, i.e. contours drop bellow the poles(awshxy the symbol’ in the
above integrals). Different Fourier components of the nfel@enents of RHS of (16))
are coupled through the non-diagonal elementd ¢®). Details of this calculation will
be presented in a separate publication.

Treating a small qdpo(z) compared to T asa perturbation

In order to obtain the eigenvalues, eigenvectors and daypite of the modes, we
take a peturbative approach. Assuming the pararseteyps/T to be small, the majority
of particles have energies greater tlygg and see the potential barrier as a small bump
that gently slows them them down as they move along their t®wambits. Thus, for
gds < E, from perturbation theory we can calcul&@g(1)’s which have the form:

Ch(1) = 581 m+ OH(E) 18)

om(E) O qps/E is the first order ine correction due to squeeze effect to the
Fourier components in action-angle space for an orbit witargy E > qds where
E ~ 1212/2myL? + (¢o), and bounce frequenay, = 9E = 1@l /mqL%. We have the



following series expansions in terms®és small parameter:

M = Mgog+Mi1+Mo+... (19)
a = atart+ar+... (20)
W = W+w+up+... (21)

ag,a1,a2 are column vectors andy, wy,wp are complex eigenfrequencies. Matrices
Mo,M1 andM2 are given by:

MgP = 6m,p<1+%xm2ﬁm(w)) (22)

MIP = 2ol [Am(@)aP(E) + Ap(e)oh(E) 23)

MIP = X2 3 Finw)om(E)aR(E) (24)
n=1

Using the relations (19) through (24), we rewrite the disjmar relation (14), collect
the terms of orders®, el and&? and set the dispersion relation at each order to zero
separately. We are specifically interested in the 1 squeezed mode, i.e. the mode
which is closest to them= 1 unsqueezed mode with spatial dependencigas-L/2)].

This is the mode which was used and studied in the experimé&hts zero’'th order
dispersion relation is given by:

1 .- _
Mo(wp).a0=0= (1+ Zxrgzl'lm) o@,=0 (25)

Equation (25) is the dispersion relation of an unsqueezeshph. Sinc# o is a diagonal
matrix, each Fourier cosine function in (9) is an eigenmadeh unsqueezed plasma.
The zero'th order eigenfrequenacy and the eigenvector are obtained by solving (25).
For modeu = 1 the zero'th order(unsqueezed) eigenvector and the damnaie are:

ay = (100,...) (26)
i |m|:|1(000)

= 7Y 27
“o T 7o RefN () @0

Whenuwy/kivr > 1, the zero’'th order damping rau%, which is the Landau damping
of the unsqueezed mode, is exponentially small@pe- o). We obtainw; anda; from
the first order dispersion relation:

. A 1
o — _4Im|'|1((j)0)0(1(E) 28)
0,Rel1(wp)
a] = (0,60,,50;,...); ij:—M},j—EZf);, i>1 (29)
0

The first order damping ra’tfia"l also turns out to be exponentially small, in the regime
wherewy > kivr. Thus, both the zero’th order and the first order correctotamping



rate are nearly zero and the dominant behavior of the damptegis of second order
with respect to smallness parameterSincee = q¢s/T and for smalle we have
¢s O |Vsq, if wo > kyvr damping rate will be proportional tb/sq|2. This behavior is
in qualitative agreement with the experimental obserwatio

We obtain the second order damping rate from the second drslgersion relation.
For wp > kyvr we have:

W, — _4Z;°=1|mﬁnfwo)(0‘2(5))2 4X1
duRe N1 (02) duRe 11 (o zzxj

(MT”(ax))?
IVI” (wo)

The first term on the RHS, which we cail, is the contribution to damping rate due to
m= 1 unsqueezed mode(cosine in position space). Particledslan as they pass the
squeeze and thus, no longer see this mode as a simple casigelatir bounce orbits, as
a function of their angle variables. As a result, the- 1 unsqueezed mode has nonzero
Fourier terms in angle variable space. Particles with bedrequencyuwy, = w/n will
resonantly interact with the n’th Fourier term and thus,ade the damping rate of the
mode.

Moreover the squeezed eigenmode is a superposition of aazqd eigenmodes,
since from (29), elements af are nonzero. Therefore, the shape of the mode potential
Is no longer a simple cosine in position space and consisksgbier harmonics irz,
which are all oscillating at the same frequenayThe contribution to the damping rate
given by second term on the RHS of (30), which we gallis due to the damping of
these higher harmonics which are coupled to ithe- 1 unsqueezed mode. In figure
(2) we compare the damping rate calculated from our compteulation results to
the analytically calculated damping rates. We chose ouarpaters in the regimes
where phase velociy was much greater than thermal velascity)at unsqueezed Landau
damping is exponentially small. For our analytical resulte depicted the contribution
to second order(ig) damping rate fronysi(circles) andy»(squares) separately, as well
as the total second order damping rate(diamonds). Compumetdation results are
depicted with triangles. We can see that damping rate regdfomy. is, in most parts,
at least an order of magnitude greater than damping rate yiois the amplitude of
squeeze potential is increased, analytically calculatadping rates become smaller
than the computer simulation results and deviate from ggdapendence behavior on
Vsql?. This is caused by the fact thads/T is no longer a small value, and thus our
perturbation method is no longer valid. Also the populatdtrapped particles, which
was not accounted for, becomes largepagrows and resonant trapped paticle-wave
interaction becomes significant, further enhancing theerdaimping rate.

CONCLUSION

The presence of a squeeze potential results in additiosaheat wave-particle inter-
actions at bounce frequencies = w/n, which enhances the mode damping rate of
Trivelpiece-Gould modes. There are two different reasaemgtfese extra resonances
to be generated: i)The squeeze potential modifies the wrped orbits of particles in
such a way that a single cosine wave in position space is 3et Iparticles (as a func-
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FIGURE 2. Mode damping rate vs. squeeze potential. Analytically dated damping rate is shown
in terms of the value frony; with circles,y, with squares, and their total suyn+ y2 with diamonds.
Computer simulation results is shown with triangles. Dadbiack line isf (x) = 106+ x?, depicted for
comparison.

tion of time) as perturbed, with higher harmonics with atygle of ordere = q¢s/T
added to the wave. ii) The shape of mode potential in posgjmace is also modified
and contains higher harmonics of amplituddeOur analysis shows that in the regime
whereqds/T < 1, andw/kyvr > 1, the mode damping rate has a square dependence
on the amplitude of the applied squeeze poterig|. This behavior is consistent with
the experimental results. We compared our analytical tesolcomputer simulations,
details of which will be discussed in a future publication.
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