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In the cold-fluid dispersion relation o = w),/[1 + (k. / kz)z}l/ ? for Trivelpiece-Gould waves on an

infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the
combination & /k.. As a result, for any frequency w < w), there are infinitely many degenerate
waves, all having the same value of k| /k.. On a cold finite-length plasma column, these degenerate
waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded
plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A
striking feature of the many-wave modes is that the short-wavelength waves often add constructively
along resonance cones given by dz/dr = * (wf, Jw? — 1)1/ 2. Also, the presence of short wavelengths
in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond
what the single-wave approximation would predict. Here, numerical solutions are obtained for modes
of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal
plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate
the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma

spheroid. © 2011 American Institute of Physics. [doi:10.1063/1.3646922]

|. BACKGROUND AND SUMMARY OF RESULTS

Figure 1 shows a schematic diagram of a single-species
plasma that is confined in a Penning-Malmberg trap. A con-
ducting cylinder is divided into three sections, and the
plasma resides in the central grounded section, with radial
confinement provided by a uniform axial magnetic field
(B = Bz) and axial confinement by voltages applied to the
outer sections of the cylinder. These plasmas routinely come
to a state of thermal equilibrium in the trap and are routinely
cooled to the cryogenic temperature range.” The plasma con-
figuration is then particularly simple; the density is constant
out to some surface of revolution and there drops to zero.?
This paper discusses the normal modes of plasma oscillation
for these cold equilibrium plasmas. Of course, cold-fluid
theory provides a good description of these modes.

At first glance, the problem sounds straightforward: find
the longitudinal modes of oscillation of a uniformly magne-
tized, uniform-density, bounded plasma in cold-fluid theory.
However, we will see that the problem is subtle and that
there is some confusion in the literature.

The origin of the difficulty is the peculiar dispersion
relation for plasma waves in a cold magnetized plasma,

o=t (1)
VK2 + K

where  is the wave frequency, w), is the plasma frequency
in the unperturbed plasma, k. is the wavenumber along the
magnetic field, and &, is the wavenumber transverse to the
field. Note that a wave with wavenumbers (k,,k ) has the
same frequency as a wave with wavenumbers (k.,k) if
k; /k/l =k,/k, thus, each wave has the same frequency
as infinitely many other waves. Upon reflection from the
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boundaries, an incident wave typically mixes with other
waves sharing the same frequency, and consequently, each
normal mode is a complicated many-wave structure.

A toy problem illustrates the issues. Consider a two
dimensional slab of uniform-density plasma that occupies
the bounded domain given by 0 < x < g and 0 <z < b, and
assume a strong magnetic field in the z-direction. The poten-
tial for a mode oscillating with frequency o satisfies the
equation

2 2\ 92
Pog, , (1 w) P39, _ .

Ox? w? | 072

Suppose that the plasma is bounded on all sides by a perfect
conductor, the potential is zero at the boundaries. In this
case, a set of normal modes and frequencies is given by

0@, (x,z) = sin (?) sin (%), 3)
- (nm/b)w, @

Jnmjay + (nm /b

where m and n are integers. For any mode (m,n), there are
an infinite number of exactly degenerate modes (m',n’)
where 7' /m’ = n/m. Each mode can be decomposed into a
pair of waves propagating in opposite directions along the
magnetic field and reflecting at the boundaries, but for this
particular geometry, there is no mixing since the sine func-
tions are orthogonal on the boundary surfaces. However, if
the boundary were deformed, the orthogonality would be
destroyed, and reflections would mix degenerate modes,
yielding more complicated many-wave modes.

© 2011 American Institute of Physics
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FIG. 1. Schematic diagram of a finite-length single-species plasma column
confined in a Penning-Malmberg trap. Axial confinement is electrostatic,
provided by an electric potential, V, applied to the outer cylindrical electro-
des; radial confinement is provided by an axial magnetic field. The confine-
ment scheme depicted here is for positively charged particles.

It is interesting to construct an alternate representation
of the degenerate modes. For any frequency, the mode
equation (2) admits characteristic solutions of the form
3¢, = dzx () /0? — 1)"2x + ¢, where ¢ is an arbitrary
constant. These solutions can be thought of as a line or ray at
slope dz/dx = * (w7 /w* — 1)"/2. For the mode frequencies
given by Eq. (4), an assembly of such rays can be arranged
end to end, so that the assembly closes on itself. The sign of
the ray changes upon reflection from the boundary, so that
the boundary condition on the wall is satisfied. Figure 2
shows a parallelogram-shaped assembly for the degenerate
mode frequency corresponding to n/m = 1. There are an in-
finite number of such parallelograms with sides of different
lengths, and this set is an alternative representation of the
sinusoidal degenerate modes of Eq. (3) for which n/m = 1.
Similar ray-like representations can be constructed for any
other set of degenerate modes—that is, for any other value
of the ratio n/m. Interestingly, if the rectangular plasma
boundary is deformed slightly, all of the degenerate sinusoi-
dal modes are mixed, but a given ray-like mode is only
modified if the boundary is moved at the points at which the
ray makes contact.

This picture is modified somewhat in cylindrical geome-
try. For example, for a uniform-density plasma bounded by a
cylindrical conducting wall at r =a and flat conducting
walls at z =0 and z = b, the mode degeneracies are only

1)1/2

conductor

FIG. 2. An example of a ray-like mode on a magnetized plasma slab of rec-
tangular cross-section, surrounded by a perfect conductor. The mode poten-
tial is a sum of four Dirac delta functions, each of which is peaked along one
side of the dashed parallelogram. Delta functions corresponding to adjacent
sides enter the sum with opposite signs so that the condition of vanishing
potential is satisfied along the boundary. There are an infinite number of
other ray-like modes with the same frequency as the mode depicted here.
The set of ray-like modes is complimentary to the set of modes that are sinu-
soidal in x and z.
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approximate. Furthermore, the ray-like solutions are replaced
by more complicated functions that are peaked along reso-
nance cones with slope* dz/dr = i(wlf/a)z - 1)1/2. A cru-
cial difference is that the cylindrical functions are not
entirely localized along these cones. Nevertheless, the basic
ideas illustrated by the rectangular toy problem persist. In
numerical studies of the normal modes for a long, cylindrical
plasma column in a Penning-Malmberg trap, we will
find complicated many-wave normal modes, with the waves
often adding to produce conical structures with slope
dzfdr = *(?/c? — 1)"/7,

We emphasize that the mixing described here is a low-
temperature phenomenon, requiring that the cold-fluid dis-
persion relation be valid for axial and transverse wavelengths
much shorter than the dimensions of the plasma. The condi-
tion for validity of the cold-fluid dispersion relation is that
(K2 + k%)% )p < 1; otherwise, kinetic effects such as Lan-
dau damping modify the dispersion relation, spoiling the
degeneracy that underlies the mixing. Using the laser cooling
technique, experimentalists regularly achieve Debye lengths
that are small compared with the plasma dimensions, and in
this regime, mixing should be observable. For example, a
recent experiment on Mg plasmas achieved a temperature
of 1072 eV at a density of 2 x 10’ cm?, corresponding to a
Debye length of 5x 107> cm; the plasma radius in this
experiment was on the order of 1 cm.’

With this background, we now return to the discussion
of normal modes for a cold equilibrium plasma in a Penning-
Malmberg trap. An important difference between this prob-
lem and the toy problem is that vacuum separates the plasma
from the conducting wall. For the simple case of a mode
with azimuthal mode number zero, the mode equation is
given by

10 8¢, 0| @28,
ror  or 0z ? 0z ’
where w,%(r, z) = wf, = constant inside the plasma and

wﬁ (r,z) = 0 in the vacuum. The mode potential vanishes on
the trap wall and as z — *oo.

Historically, two geometrical limits have been empha-
sized. In the first limit, pioneered by the atomic physics com-
munity, the plasma is small compared to the radius of the
cylindrical conductor and resides in a quadratic trap poten-
tial. The surface of revolution defining the shape of the
plasma is spheroidal in this limit.° Using spheroidal coordi-
nates, exact analytic expressions for the normal modes can
be found, and images of modes in Be + plasmas corroborate
these results.”® However, these modes have many near
degeneracies, and one expects that a deformation of the
spheroidal boundary will mix these modes.

In the second limit, more familiar to plasma physicists,
the plasma is long compared to the radius of the conducting
cylinder and takes the shape of a finite-length cylinder with
rounded ends. The more complicated shape of these longer
plasmas prevents an analytic description of the modes. How-
ever, the solution by Trivelpiece and Gould (TG) for waves
on a cold, magnetized, infinitely long plasma cylinder
provides a useful benchmark for theoretical studies of modes
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on a finite-length plasma cylinder.” Previous theory has
argued that, to a good approximation, each mode is a single
standing TG wave with the axial wavenumber quantized to
fit the length of the plasma column. Moreover, for the case
of warm plasmas with significant kinetic effects, experimen-
tal observations are consistent with this simple picture.'” In
contrast, our numerical solution based on cold-fluid theory
shows that each mode involves many TG waves, which often
add to produce conical structures at the expected slope,
dz/dr = *(?/o? — 1)/,

The dispersion relation for the TG waves is given by
Eq. (1), but with the transverse wavenumber k| quantized to
discrete values, each corresponding to a different solution
to the differential equation for the radial dependence of the
wave. Upon reflection at the end of the column, a given TG
wave reflects not only into its backward-propagating counter-
part, but also into other waves with different radial wavefunc-
tions."" Note that when w and k, are specified, Eq. (1)
chooses the value of k.. The value of k. is important in deter-
mining the extent to which a wave participates in the mode.
If, after a complete circuit of two reflections, the wave adds in
a phase with itself (say, to produce a standing wave), then that
wave will tend to play a significant role in the mode. Such ap-
proximate standing waves here play the role of the exactly
degenerate modes in the toy problem.

The numerical method employed here is easiest to
understand for the idealized case where the plasma column
has flat ends—that is, where the plasma is a perfect right cir-
cular cylinder as shown in Fig. 3(a). In this case, the plasma
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FIG. 3. Three idealized plasma shapes for which the modes of oscillation
are calculated: (a) a cylinder with flat ends, (b) a cylinder with spheroidal
ends, and (c) a spheroid. In each of the three regions separated by the dashed
curves, we express the mode potential as a linear combination of functions
that satisfy the mode equation and boundary conditions in that particular
region. The numerical task is to choose the coefficients in each linear combi-
nation, so that the mode potential and the normal derivative of the electric
displacement match at the boundary surfaces shown here as dashed curves.
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has a well-defined length, L and we take the plasma to be
centered on the origin, so that the ends of the plasma lie at
z = *=L/2. The dashed lines in Fig. 3(a) divide the confine-
ment region axially into a central region where the plasma
resides and two adjacent vacuum regions. Following Prasad
and O’Neil,'" we expand the mode potential in the central
region in an infinite series of TG waves, all having the same
frequency, w—the unknown frequency of the mode—but
different axial and transverse wavenumbers, k. and &, . Each
of these waves satisfies the mode equation for a mode with
frequency @ as well as the boundary condition on the wall,
and each can be expressed analytically. In the vacuum region
z > L/2, we express the mode potential in an infinite series
of cylindrical harmonics of the form Jy(y,"/R)
exp[—yon(z — L/2)/R], where R is the radius of the conduct-
ing cylinder, y, is the nth zero of the Bessel function Jy(x),
and n is a positive integer. For the vacuum region z < —L/2,
there is simply a sign change in the argument of the expo-
nential (and an overall sign change in the case of odd
modes). The three series satisfy the mode equation in the
three regions as well as the boundary conditions on the wall
and at z — *oo, and the numerical task is to find a fre-
quency o and to choose the coefficients in the series, so that
the solutions match properly across the surfaces separating
these regions. The mode potential and the normal component
of the electric displacement vector must be continuous across
these surfaces.

An advantage of this numerical method is that it explic-
itly identifies the extent to which each TG wave participates
in a given normal mode. Also, use of the known TG wave
solutions and vacuum solutions effectively reduces the
dimension of the numerical task. Matching on the boundary
surface involves N unknowns, whereas a numerical solution
on a grid spanning r and z would involve N? unknowns.

For the simple case of flat ends, the matching task is
facilitated by the orthogonality of both the Bessel functions
and the TG radial wavefunctions on the flat matching surfa-
ces [the dashed lines in Fig. 3(a)]. Note, however, that the
Bessel functions are not orthogonal to the TG radial wave-
functions; indeed, it is the lack of orthogonality that gives
rise to mixing upon reflection. Each TG wave couples to
many vacuum solutions, and these couple back to different
TG waves. In contrast with the toy problem, the plasma ends
need not be deformed to get wave mixing.

Of course, numerical solution of the matching condi-
tions requires that the three series be truncated at a finite
number of terms, and here a difficulty arises for the idealiza-
tion of a flat end. We do not find convergence of the solution,
in that TG waves of arbitrarily large wavenumber appear to
participate significantly in each mode.

Figure 3(b) shows a more realistic plasma with spheroi-
dal ends that fit smoothly onto the central cylindrical section
of the plasma. Here, the matching surfaces that separate the
central region containing the plasma from the adjacent vac-
uum regions are no longer flat but extend outward to follow
the end-shape of the plasma [the dashed curves in Fig. 3(b)].
Again we expand the mode potential in three series for the
three regions, but here we lose the orthogonality of the Bes-
sel functions and of the TG radial wavefunctions on the
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matching surfaces. The matching is carried out by choosing
the frequency and the coefficients in the series to minimize
the mean-squared error in matching at a large number of
sample points on the matching surface. Fortunately, the
rounding of the ends suppresses the coupling to large-
wavenumber components, and we find convergent solutions.

By taking the central cylindrical section of the plasma to
be much shorter than the spheroidal end-caps, we obtain a
plasma that is nearly spheroidal in shape, as illustrated in
Fig. 3(c). Then, by taking the radius of the trap to be large in
comparison with the dimensions of the plasma, we approach
the limit in which analytic expressions for the modes are
known.” In this range of parameters, modes obtained using
our numerical method bear close resemblance to those pre-
dicted by the analytic expressions. However, for these nearly
spheroidal plasmas, convergence is too slow to resolve fine-
scale details of the modes.

For a nearly spheroidal plasma, perturbation theory pro-
vides a more instructive approach; the modes of a perfectly
spheroidal plasma provide a natural set of basis functions for
this perturbation analysis. The basis functions become mixed
when small deformations of the spheroidal plasma boundary
are introduced, and we obtain a general expression for the cou-
pling. In the neighborhood of particular values of the plasma
aspect ratio where multiple low-order basis functions are
degenerate, the mixing can be of order unity. However, such
strong mixing is limited by a selection rule; basis functions
with disparate modenumbers will not be strongly mixed unless
the perturbed plasma boundary exhibits fine-scale ripples.

When viscosity is introduced, a signature of the predicted
wave-mixing is that the least damped modes of the cold
plasma cylinder damp more quickly than one would expect
based on the assumption that the mode is a single standing
TG wave. The reason for the enhanced damping is that the
viscous momentum flux underlying the damping is intensified
by the presence of steep momentum gradients—i.e., high
wavenumbers—in the mixed mode. We investigate viscous
damping in the limit where viscous effects can be treated as a
perturbation to Eq. (5). To first order in viscosity, each mode
damps with a rate given by a quadratic form that acts on the
zero-order (inviscid) mode. We evaluate this expression for
one of the numerically calculated modes and compare with
the rate obtained by approximating the mode as a single TG
wave. The single-wave approximation underestimates the
damping rate by roughly an order of magnitude.

The organization of the paper is as follows: in Sec. II,
we introduce the equations of motion for the cold, magne-
tized plasma; in Sec. III, we review the TG solutions for an
infinitely long plasma column; in Sec. IV, we seek the modes
of a finite-length plasma column with flat ends; in Sec. V,
modes of a finite-length plasma column with rounded ends
are obtained numerically; in Sec. VI, the mixing of modes on
a nearly spheroidal plasma is investigated using perturbation
theory; and in Sec. VII, viscous damping is discussed.

Il. COLD-FLUID EQUATIONS OF MOTION

As an approximation to the Penning-Malmberg trap con-
figuration shown in Fig. 1, we assume that mode potential
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satisfies the boundary conditions é¢p =0 at r =R and at
z — *o00, where R is the radius of the conducting wall of the
trap. For azimuthally symmetric modes, Poisson’s equation
takes the form

ror ! or 072

1 2
0,000 + 909 = —4mngon, (6)

where 0¢ is the mode potential, dn is the corresponding den-
sity perturbation, and ¢ is the charge of a single particle.

In accord with the experiments that we have in mind, we
assume that the axial magnetic field in the trap is sufficiently
large that the drift approximation is justified. In cold-fluid
theory, small azimuthally symmetric perturbations then
evolve in time following the linearized continuity and mo-
mentum equations,

dén 0O

o + P (nooV-) =0, (N
AV, 19410

0 g = A ®

where 6V is the perturbed fluid velocity associated with the
mode, ng(r,z) is the unperturbed density, and m is the parti-
cle mass.

Seeking normal-mode solutions to Egs. (6)—(8), we
assume that the perturbation oscillates with frequency o,

on(r,z,t) Ony(r,z)
OV.(r,z,t) » =Re|e ™ x { 6V, ,(r,2) )
o(r,z,1) 0, (r, 2)
and substitute, obtaining
10 08¢, 0*¢p
- [0 w — _4 o 1
ror o * 072 mqon (10)
~ iwony +-2 (nedV. ) = 0 (11)
1won, 0z nooV:w) =Y,
T Ap—u iy (12)
’ 0z

Equations (10)—(12) can be combined to give

a. 602 aZ = 07 (13)

10 000, 0|, wy(r,2) | ddg,
ror or oz |

where a);(r, z) = 4nq*ny(r,z)/m. Equation (13) represents a
generalized eigenvalue problem, since typically both d¢,,
and o are unknown.

Multiplication of Eq. (13) by d¢,, and integration over
the interior of the trap gives a formal expression for the
mode frequency in terms of the mode potential,'?

L s, 5)(050,/0° .
@ = frdrdz[(@é(pw/OZ)z + (85(/’(”/8")2] ,

where integration by parts has been employed. It follows
from this formula that the allowed mode frequencies are real
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and bounded by the plasma frequency; that is, 0 < w?

< max|[w)(r,2)] = 7.
Alternatively, one can derive an integral equation'

for the z-component of the mode electric field, JF.,,

= —3d¢,/0z, by inverting Poisson’s equation with the

Green'’s function, G(r,z|r',Z'), defined by the conditions

10 9G &G o(r—r)i(z—2)

ror or oz r ’ (15

G|)A:R - G|\z—z’\—>oo - O (16)

In terms of the Green’s function, Eq. (10) can be recast in
the form

0¢,(r,z) = —4ngq Jr/dr/dzlénw(r/a Z/)G(rv Zl"/7 Z/)~ a7

Equations (11) and (12) give the perturbed density in terms
of the electric field,

0

4dngon, = — o

2
L’%E] . (18)

w?

Inserting this expression in Eq. (17), integrating by parts,
and taking the partial derivative with respect to z, one obtains
the integral equation

N W,
BZaZ/bEZ’w(’ ;Z)' (19)

W*SE, ,(r,z) = — Jr'dr'dz’wf,(r',z/) oG
Unlike Eq. (13), Eq. (19) constitutes a linear eigenvalue
problem, —w? being the eigenvalue, and JF. ,, the eigen-
function. Furthermore, the integral operator on the right-
hand-side is self-adjoint with respect to the inner product
(fi,) = frdrdza)g(r, 2)fifa, Tt follows that all mode fre-
quencies are real and that for any two modes with distinct
frequencies w and ' the axial electric fields are orthogonal
inside the plasma,

errdza)i(r,z)éEm(r, 2)0E, o (r,z) =0 (0 # o). (20)

While the integral equation (19) is equivalent to the dif-
ferential equation (13) (with boundary conditions), it should
be emphasized that JE, ,—not d¢,—is the true eigenfunc-
tion. For a mode that consists of many component waves,
this distinction is important, since it is easy to underestimate
the degree of the mixing when viewing a plot of the mode
potential (see Figs. 5 and 8). For example, a wave with axial
wavenumber k, that appears with amplitude A in the z-com-
ponent of the mode electric field will appear with amplitude
A/k. in the mode potential, since JE. , = —dd¢,,/0z. In this
sense, large axial wavenumbers are suppressed relative to
smaller wavenumbers in the mode potential. In contrast, the
density gives an exaggerated impression of the mixing; a
wave which appears with amplitude A in the z-component of
the mode electric field will appear with amplitude
(k% |k*)A /k. in the mode density.
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lll. TRIVELPIECE-GOULD WAVES

Before considering modes of a finite-length plasma cyl-
inder, we present the solutions of Eq. (13) obtained by Triv-
elpiece and Gould for the case of an infinitely long cylinder.’
In this case, Eq. (13) simplifies to

10 g, wy(r)| 889,
ror or +[1_ w? 022

=0, 21

which is separable. Specifically, for any real w, there exist
an infinite number of degenerate solutions of the form
5o, (r,2) = Yy (s r)e=. (22)

Substitution into Eq. (21) yields a differential equation for
the radial dependence, tp;G(a); r),

Ld dy,’(;r) o (| g,
;Er dr — km 1— 7 l//m (CU,’) =0. (23)

In thermal equilibrium, the radial plasma density profile,
no(r), is nearly constant out to some radius and there
abruptly falls off on the scale of the Debye length. Following
Trivelpiece and Gould, we take an unperturbed density pro-
file that is constant out to some radius, a, and zero outside
this radius,

no(r) = noH(r — a), (24)

where H(x) is the Heaviside step function. This choice corre-
sponds to an equilibrium density profile in the limit of zero
temperature. A finite-temperature equilibrium density profile
in place of the approximation (24) would necessitate numeri-
cal solution of Eq. (23), but the qualitative behavior of these
solutions (e.g., oscillatory out to some radius; monotonically
decreasing outside this radius) would be the same.

With the assumption of a step-function density profile,
Eq. (23) becomes a Bessel equation in the domain » < @ and
a modified Bessel equation in the domain a < r < R. Mak-
ing use of the boundary condition 6 =0 at r =R and
requiring that é¢ be continuous at » = a, one finds solutions

of the form
Jo (kmr, /wﬁ/w2 —1

r<a
WG (w;r) ~ Jo 2
lollnr)Ko (k) = o (luR)Ko (k)
To(bn@)Ko (knR) —TolknR) Ko kya) =" ="
©5)

The wavenumber k,, = k,,(w) is given by the mth nonnega-
tive solution to the equation
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which comes from the requirement that dd¢/dr be con-
tinuous at r =a. These are the azimuthally symmetric
Trivelpiece-Gould waves. By defining the transverse wave-
number &y, = kn(w)/o* — 1)'/2, one recovers the disper-
sion equation (1).

In addition to the Trivelpiece-Gould waves, there exists
another class of solutions to Eq. (21) of the form'!

8¢, (r,z) = Wi (w;r)e™”. 27)

For these solutions, the radial dependence is given by

Iy (;c,,,m /wz/w2—1>

r<a
Wh(wsr) o { To(snay fo /02 1)
Jo(Kmr)No(kmR) — Jo (16mR)No (K1) )
To (@) No (o R) —Jo (knR)No (1) * =" =
(28)

where ,, is the mth nonnegative solution to the equation

T Il(Ka,/wg/wZ_l)
' @/ llo(lca,/a)[%/w2 — 1)

Jo(ka)No(kR) — Jo(kR)Ny(ka)
Tol<a)No(R) — Jo(KR)No(a)

=0. (29

We will refer to these solutions as “annular solutions,” since
they are localized in the annular vacuum region a < r < R.
Because the annular solutions become exponentially large as
z — *o0o0, they are typically ignored in the theory of the
infinitely long cylinder; however, we will need these solu-
tions when we solve for modes of a finite-length plasma
cylinder.

The functions ¥!%(w;r) and Y2 (w;r) are mutually
orthogonal on the interval 0 < r < R with weight function
o, r)=1-— a)i(r) /@?; we choose the normalization so that''

R R2
J rdrs(a),r)tpm(w r)lpTG(w r) = —75,%/ (30)
0

and

R 2
J rdre(o, P\ (o; r)Yh (1) = R?émm/. (31)
0

The difference in sign ensures that both '%(w;r) and
¥4 (w; ) are real-valued functions, since the function &(, r)
is negative inside the plasma, where the functions x//,TnG(a); r)
are localized, and positive outside the plasma, where the
functions l//j}l(co; r) are localized. Several of the functions
Y (w;r) and Y (w;r) are plotted in Fig. 4 for R = 1,
a=1/2,and v/w, = 1/10.

IV. MODES OF A PLASMA COLUMN WITH FLAT ENDS

We now search for modes of a finite-length plasma
cylinder. Jennings et al. approached this problem by discre-
tizing equation (13), while Rasband et al. employed a finite-
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E M
"o 0 =w,/10 VN im=2
15 m=73% Nt

FIG. 4. Several of the functions % (w;r) and ¥ (w;r) plotted for the
parameter values /w, = 0.1, a = 0.5, and R = 1. These functions give the
radial dependence of the Trivelpiece-Gould and annular solutions on an
infinitely long plasma cylinder.

element method.'>' Following Prasad and O’Neil,!' we
choose to represent each mode as a linear combination of
the TG and annular solutions discussed in Sec. III. This
approach manifests the mixing of degenerate waves.

In this section, we focus on a well-known model which
takes the unperturbed plasma density to be constant inside a
right-circular cylinder of radius @ and length L and zero out-
side this cylinder [Fig. 3(a)],

no(r,z) = noH(r —a)H(|z| — L/2). (32)
In this case, although the Trivelpiece-Gould and annular sol-
utions are no longer global solutions to Eq. (13), they still
satisfy this equation in the region |z| < L/2. We assume that
the mode potential in this region can be expressed as a linear
combination of these solutions,

ZBmx//
+ZCW2(
m=1

sin(kmz)

5(/)01 T, Z sm(kmL/Z)

sinh(r,2)
W;r) ——————. 33
’ sinh(x,,L/2) (33)
For |z| > L/2, Eq. (13) reduces to Laplace’s equation, and
thus, in this region, the mode potential can be expressed as a
linear combination of vacuum solutions,

S Aol [R)e M ELRIR - (34)

n=1

0@, (r,z) = sign(z
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Here, we have assumed that the mode potential is odd in z;
the generalization to even modes is straightforward.

For the sake of numerical tractability, we must approxi-
mate Egs. (33) and (34) by the partial series

N/2

" sin(kpz)

)= 2 P Gttt )

N/2 sinh(x,,2)
Jr,;mef"(w’r)sinh(KmL/Z) (35)

and

ZAmJO Joml"/R)e 7onLIDIR

m=1

0¢,,(r,z) = sign(z
(36)

where N is some finite number of basis functions presumed
to be sufficient to represent the mode to the desired degree of
accuracy.

Note that the set of basis functions used here is not com-
plete in the usual sense; we have only assumed that it is suffi-
cient to represent a global solution to the mode equation
with frequency w. Expressing the global solution as a linear
combination of local solutions in distinct domains has the
advantage that convergence is much faster than would be the
case if a more conventional basis was employed—for exam-
ple, if the Fourier expansion ¢, = > mAmdo(Yom/R)
sin[(2n — 1)z/L] was used in place of Eq. (35). Suppose that,
in order to achieve some prescribed level of resolution of the
mode, N2 basis functions from the more standard basis
are required; the same resolution can be achieved with just N
basis functions of the type used here.

Taken together, the series (35) and (36) satisfy Eq. (13)
everywhere inside the trap; all that remains is to find a set of
coefficients, A,,, B,,, and C,,, and a frequency, , such that
the resulting mode potential satisfies the required matching
conditions at the boundary, z = *L/2. One such condition is
that d¢ be continuous at z = *L/2. Thus, we evaluate
Egs. (35) and (36) at z = =L /2, equate the resulting expres-
sions, multiply by Jo(yo,7/R), and integrate to obtain

N/2 R
B R0 = Y B || et RO 1)
m=1 0

NJ2

+Zc,,,J rdrdo (o, /R)WA (i 7). (37)

The other matching condition is that the z-component of the
electric displacement, 0D, = [w?(r,z)/w* — 1]03¢/0z, be
continuous at z = =L /2. Accordingly, we equate the “inner”
and “outer” expressions for D, resulting from Egs. (35) and
(36), respectively. An inner product with w;c(w; r) then
yields

B bncot(bL/2)B ZA (/) [ et )

< (w;r), (38)
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while an inner product with lpfn(w; r) yields

2

R
= Km coth(k,,L/2)Cy,

N

R
=3 Adl /B j rdrdo(gour [R)WA(@ir). (39)

Note that we have employed the orthogonality relations (30)
and (31) in obtaining Egs. (38) and (39). Elimination of A,
in Egs. (38) and (39) using Eq. (37) yields two sets of
coupled equations for the amplitudes of the Trivelpiece-
Gould and vacuum components, B,, and C,,,

ky cot(kuL/2)By — Nz/é By XN: %
. m'=1 n=1
|| stz R0 >j v (o /RIWIC (057)
* R2T, (2on) /2 R (o) /2
N2 N JR rdrJo(xour /RS (5 7)

_ ZC”"Z_

n=1

R
jrdﬂouonr/m S(c; 1)
=0. 40
x R2J1 (%0,)/2 40

R2J1(%0,) /2

and

N/2 N

K COth(1,L/2)Cry + Y B D22 Lo

m'=1 n=1

J rdrdo(onr/RYWYS (0 r)j rdrdo(onr/R)WA (@1 7)
R2J1 (%0,)/2 R2J1(%0,)/2

w2 . J rdrlo(our [RYWA (00:7)
+ C "
2 Z R (o) /2

m'=1

R
|| rarsatr R )
0
X =0. (41)
Ry (%0,) /2
Equations (40) and (41) specify N equations for N unknowns,
which can be expressed in matrix notation as

X

N
> My (@) [or M(e) - x= 0], (42)
m'=1
where x = (By, B3, ...,By2,C1,C, ...,Cy/) and M(w) is a

symmetric matrix with elements

N
M’”’"'(w) = kin COt(kn1L/2)5mm’ - Z %

n=1

jR:erom,,z/R) 9 (w3 r)
R o))

[/ stz R i1
R (o) )2

X

X

(43)
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form <N/2andm’ < N/2,

Xon
R

N
My (@) = 16, coth(rc,,L/2) Oy — Z
n=1

R
L rdrdo (ot /R)W (@ 1)
R (1on)/2

R
j rdrTo(tour /R (e;7)
0
R (o2 (9

forN/2<m<NandN/2 <m' <N, and

X

R

v || G /R (w50
Mmm/(w) - - Z?ﬂ 0
n=1

m'

Ry (o) /2

R
j redro (our [ROWIC (03 1)
0
TR 2 )

form < N/2and N/2 < m’ < N. Equation (42) constitutes a
generalized eigenvalue problem; each matrix element
depends on the unknown mode frequency, w through the
functions '%(w;r) and Y2 (w;r) and the wavenumbers
ky = k() and K, = 16, ().

A. Analytic solution for a=R

In order to better understand the matrix equation (42), it
is instructive to consider the simple case in which the plasma
extends to the trap wall—that is, « = R. In this case, there
are no annular solutions, so the matrix M is given entirely by
Eq. (43). Furthermore, the TG solutions have the same radial
dependence as the vacuum solutions,

ki(w) JO(XOmr/R)
(XOm/R)Z ]1 (XOm)

YrC(wsr) = (46)

[the normalization follows from Eq. (30)]. Consequently, the
second term on the right-hand side of Eq. (43) is zero unless
m = m', implying that a given TG wave reflects entirely
back into itself at z = *=L/2. In other words, the matrix M is
diagonal, and Eq. (46) takes the simple form

[k cot(kL/2) — K2R/ %0m]Bm = 0. 47)

Thus, when the plasma extends to the trap wall, the modes
are just standing TG waves with radial dependence given by
Eq. (46) and axial wavenumber quantized according to the
condition that the diagonal matrix element equal zero,

cot(kyuL/2) — kmR /y0m = O. (48)

For a long plasma, it follows that for radial modenumber m,
the allowed axial wavenumbers are given by £k,
= (2n — 1)n/L — Sky,, where n is an integer and Ok, is a
correction of order R/L?. Inserting this expression in
Eq. (48) and expanding the cotangent term, one finds that to
first order in R/L?, Skyy =2 (2n — 1)27R / (10mL?)-
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B. Numerical solution fora<R

When the plasma does not extend to the trap wall, the
radialdependence of the TG waves no longer matches that of
the vacuum solutions. Consequently, at z = *L/2, an inci-
dent TG wave reflects partially back into itself and partially
into other TG waves. It follows that each mode must be a
mixture of multiple component waves. From a cursory analy-
sis of the matrix M, one can guess which waves should
appear prominently in the admixture for a mode with fre-
quency . According to the normalization condition (30),
the second term on the right-hand side of Eq. (43)—and thus
any off-diagonal matrix element—is of order R/L? or
smaller."" In contrast, the first term on the right-hand side of
Eq. (43), which appears only on the diagonal of the matrix,
can be any size, diverging as k,,(®)L/2 approaches any mul-
tiple of n, and vanishing as k,(w)L/2 approaches any odd
multiple of n/2. If the wavenumber k,(w) is such that
Ky cot(k,L/2)| > R/L?, the mth diagonal element will be
large, and one can see that the amplitude of the mth wave
must then be small in order for Eq. (42) to be satisfied. Con-
versely, the amplitude of the mth wave may be large only if
the mth diagonal element is small compared to R/L?; as in
the previous example, this occurs for wavenumbers k()
= (2n— 1)n/L — Sk, (), where n is an integer and 0k, (w)
is a correction of order R/L?. For a given mode frequency,
there can be many such waves, and these waves will give the
dominant contribution to the admixture for that mode.

The heuristic argument outlined in the preceding para-
graph is a revised version of an argument introduced by Pra-
sad and O’Neil.'" These authors derived a generalized
version of Eq. (10) for a mode with azimuthal dependence
and carried out a perturbative solution based on the small-
ness of the off-diagonal matrix elements. However, a tacit
assumption underlying the perturbation theory is that only
one of the diagonal elements of the matrix is small compared
to the off-diagonal elements in its row, and this assumption
is unjustified.

We proceed by evaluating the matrix M(w) on a grid in
w-space and calculating the determinant at each point on this
grid. We search for values of o for which Det[M(w)] = 0, at
these values, the null-vector, X, gives a solution to Eq. (42).
As expected, the contribution to each solution is greatest
from wavenumbers k,(w) = (2n — 1)n/L. However, as the
number of basis functions, N, is increased, increasingly
short-wavelength waves enter the admixture for each solu-
tion with significant amplitude, and this trend continues to
the limit of our computational capability. The lack of conver-
gence should not be surprising. The off-diagonal matrix ele-
ments fall off only as m ™' and are non-negligible even for
large m; thus, for arbitrarily large m, the mth diagonal matrix
element can still be smaller than the off-diagonal elements in
the mth row, provided that the wavenumber k,, is close
enough to (2n — 1)7/L, where n is an integer.

An exemplary solution is plotted in Fig. 5—with various
numbers of basis functions retained—as an illustration of the
appearance of increasingly large wavenumbers in each solu-
tion. In Fig. 5(a), only four TG waves are retained, and the
dominant term in the admixture comes from the first TG
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FIG. 5. (Color online) The axial electric field, JE. ,, and potential, d¢,,, corresponding to a solution of the matrix equation (42) obtained by retaining 8 terms
(a) and 16 terms (b) in the series (35) and (36). The plasma has length L = 14.0 and radius @ = 0.5, and the trap has radius R = 1.0. As the number of basis

functions is increased, the solution involves increasingly large wavenumbers.

wave, which has wavenumber k() = 3n/L — 6.94(R/L?),
where o is the frequency of the solution. In Fig. 5(b), eight
waves are retained, and now the seventh wave, which has
wavelength k() =2 397 /L — 2.45(R/L?), enters the admix-
ture with amplitude comparable to that of the first wave.
With more waves retained, the solution incurs significant
contributions from even shorter wavelengths.

V. MODES OF A PLASMA COLUMN
WITH SPHEROIDAL END-SHAPE

There is a reason to suspect that the appearance of
increasingly short wavelengths in each of the solutions
obtained in Sec. IV stems from the crude approximation of
the plasma shape as a cylinder with perfectly flat ends and
hence sharp edges. The mode structure is determined by the
coupling between TG waves reflecting at the ends of the
plasma cylinder, and this coupling must be affected by the
end-shape. In this section, we generalize the method of Sec.
IV and look for modes of a plasma cylinder with spheroidal
end-shape. In this case, the plasma boundary is given by
r=a for |z]<L/2 and by [(z—L/2)/(ALy/2)]
+(r/a)* =1 for |z| > L/2, where ALy is the combined
length of the two spheroidal end caps. Note that this plasma
boundary has no sharp edges. For long cylindrical plasmas
satisfying the ordering L > R ~ a, the curvature of the ends

of the plasma cylinder in equilibrium is typically of order
1/a, so we will consider end-shapes with AL of order a’

Following the procedure of Sec. IV, we divide the space
inside the trap into regions with distinct solution sets, as
depicted in Fig. 3(b). The surface that separates these regions
is given by z = [L 4+ AL(r)|/2, where

1—(7’/0)2 r<a (49)
0 a<r<R

AL(r) { (ALy/2)
2

is the deviation from the flat matching surface taken in Sec.
VI. We express the mode potential as the series (35) and (36)
in the appropriate domains. Again, the matching conditions
on 6¢ and 6D = [wf,(r,z)/cu2 — 1](00¢/0z)z — (0d¢/Or)F
yield coupled equations for the coefficients B, and C,. The
continuity of d¢ gives

N
Z Ando(o,r/R)e 1onAET 2R)
n=1

N/2 1
16, Sin{kn(®)[L + AL(r)]/2}
N/2 sinh{r,(w)[L + AL(r)]/2} . (50)

+ m; Conbin(:7) sinh {1 (w)L/2}
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while the continuity of 6D - n gives

ZAn(Xon/R)e_Z“"AL(r [ (1) (tou/R)+11, () (2ou /R)]

N/2 dlpTG(o) r)sin{k, (w)[L+AL(r)]/2}
“_EE:BW[”’ dr sin{k, (w)L/2}

+nz<r>e<co,r>km(w)av?nG(w;r)C"S{km(‘”) Py

sin{ky(w)L/2}
NJ2 ’
(ewsr)sinh{x, (w)[L+AL(r)]/2}
,Zcm [”) sinh{x,,(w)L/2}
+"z<r>8<w,r)xm<w>w2<w;r>C°Sh§f£({Of<l%;>ﬁ(zr})]/2}} :

(S

where n,(r) and n,(r) are the radial and axial components of
the unit vector n that is normal to the matching surface.

The analysis of Sec. IV relies on the orthogonality prop-
erties of the Bessel functions and the functions 1//,2G(w; r)
and wﬁ(w; r), however, this approach fails here because the
curvature of the plasma boundary introduces additional r-de-
pendence. Instead, we discretize the radial coordinate, taking
P points, {ry, ra,..., rp}, and evaluate Egs. (50) and (51) on
this grid, obtaining two sets of coupled equations,

N
D Aol /R)e 70/ O
n=1

N/2
_ G ( Sln{km( )L+ AL(r,)]/2}
ZB"I‘/’ sin{kn(0)L/2)}

N/2 smh{;cm( )L+ AL(r,)]/2}
*ZC'"‘”A snh{p @)Lz O

and

D A Rpe 1AV
X [ (rp )0 Glon/R) + 1 (1)1 (o7 /R)]
N/2 T
—-Snfpe e
8 Sln{ksfn{)lc[j(+)ALL/(2})]/2} + n(rp)e(@, 1p) k(@)
e =)

w2 i
_ZC |:n’ (’ ) r=r,
smh{icm( JIL+ AL(r,)]/2} " e(w, )i (o
X sinh {1, (@)L/2} + n(rp)e(w, 1) iKm (@)
4, cosh{r,(w)[L + AL(r,)]/2}
X lﬁm(w,ip) sinh{Km(w)L/z} :|

(53)

Equations (52) and (53) comprise a system of 2P equations
for 2N unknowns and can be expressed as a single matrix
equation,
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[or M'(w) - X' = 0], (54)

E: pn =

where x' = (A],Az, ...,AN,Bl,BQ, ...,BN/z,Cl,Cz, ---»CN/Z)
and M'(w) is a 2P x 2N matrix; the primes are a reminder
that the matrix M’ and the vector x" are distinct from M and
x as defined in Sec. IV.

In order for every basis function to be well-resolved on
the radial grid, we take P > N, and thus, Eq. (54) becomes
an over-determined system of equations that cannot be satis-
fied exactly. Thus, we seek a nonzero vector x' and fre-
quency o that together minimize the mean squared
mismatch at the boundary, A(w, x’), defined as

! 1 ! n2
A(w,x)EE[M(w)x] . (55)
We exclude the trivial solution, x' = 0, by imposing a nor-
malization constraint. We observe that a variety of different
normalization constraints lead to the same solutions. A sim-
ple choice is the following:

[S(w) X =1, (56)
where
) = kn(a))énn
Su(©) = sin[k,(w)L/2]’ 57

for n <N/2 and S,y = 0 otherwise. This constraint simply
requires that the squared amplitudes of all Trivelpiece-Gould
components making up the mode electric field sum to one.

For fixed w, the minima of A(w,x’) under this normal-
ization constraint are given by the condition

O(IM/(@) - XT = 2{IS(@) X = 1}) =0, (58)

where 4 is a Lagrange multiplier and the variation is taken
with respect to x'. Carrying out the variation yields

M () - M(0) - X = IST () - S(w) - X, (59)
where the superscript 7 denotes the transpose. In other
words, for fixed @ the local minima of A(w,x’) are given by
the “generalized eigenvectors™ of the matrix M'" () - M (w)
with respect to the matrix S”(w) - S(w). The global mini-
mum (on the surface of constraint) is given by the eigenvec-
tor with the smallest eigenvalue; all eigenvalues are positive
since both M'" (w) - M(w) and S”(w) - S(w) are positive-
definite.

To find a mode frequency, we therefore evaluate the
matrices M'" (@) - M'(w) and ST(w) - S(w) on a grid in w
and determine the smallest eigenvalue, Amin(w), at each grid
point. For N > 1, the function A, (w) typically has many
local minima. As N and P are increased, some of these min-
ima approach zero (as does the corresponding mismatch),
and the value of @, where such a minimum occurs, gives the
frequency of a mode. The mode potential is given by the
eigenvector, X', corresponding to Amin(®) at the mode fre-
quency. The procedure is illustrated in Fig. 6.
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FIG. 6. (a) Evaluation of the function Ay, () on a grid in w for N = 8 basis
functions. The local minima near @ = 0.070w, and w = 0.078w), indicate
the frequencies of two low-order modes. (b) Evaluation of the function
Jmin(®) on a finer grid in w for N = 24 (open rectangles) and N = 48 (solid
circles) basis functions.

In practice, when only a few terms are retained in the se-
ries (35) and (36) and the corresponding function Ami,(w) is
plotted, one observes relatively few local minima, and the
location of each minimum gives a rough indication of the
frequency of a mode comprised mostly of long-wavelength
waves [Fig. 6(a)]. Using this information, one can then keep
many more terms in the series and plot the corresponding
function Ayn(®) over a much smaller frequency interval
about one of these minima [Fig. 6(b)]. Of course, this strat-
egy only works for the relatively smooth modes comprised
mostly of long-wavelength waves, but these are typically the
most relevant modes in an experiment. An example of
the matching of the potential and electric displacement at the
sample points along the matching surface is shown in Fig. 7;
in this example, the numbers of basis functions and sample
points retained are N = 48 and P = 240, respectively. Note
that two sets of points in Fig. 7 lie on top of each other, indi-
cating good matching.

Several exemplary solutions are plotted in Fig. 8. We
observe that strong mixing occurs only amongst waves with
axial wavelengths larger than the variation in plasma length,
ALy, and in particular for wavenumbers k,, = (2n — 1)z /L,
where 7 is an integer. For example, Fig. 8(a) shows a mode
that is mostly a mixture of the m = 1 and m = 2 waves hav-
ing wavenumbers k; = n/L and k, = 3n/L. [Recall that the
wavenumbers &, = k,(w) of the component waves are
determined by Eq. (26) and the frequency of the mode, w.]
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FIG. 7. An example of the matching of the mode potential, d¢,, and normal
component of the electric displacement, dD,, - n, at the sample points along
the matching surface. Each black circle gives the value of the right-hand
side of Eq. (52) or (53) at these sample points; that is, the value of the elec-
tric potential or normal component of the electric displacement as the sam-
ple point is approached from inside. Each white circle gives the value of the
left-hand side of Eq. (52) or (53) at these sample points; that is, the value of
the electric potential or normal component of the electric displacement as
the sample point is approached from outside. Note that the white circles lie
on top of the black circles. Here, N = 48 and P = 240 The spatial depend-
ence of this mode is displayed in Fig. 8(a).

Waves with shorter axial wavelengths are less strongly
mixed but tend to add constructively to create fine-scale
cone-like structures in the mode along resonance cones with
slope dz/dr = *(w? /o — 1)'/2. The modes shown in Figs.
8(b) and 8(c) exhibit these cone-like features.

It should be noted that Jennings et al. also find solutions
to the mode equation that do not resemble any single
Trivelpiece-Gould wave.'2 In addition, the authors note that
according to Eq. (14), very different waveforms can have
similar frequencies. However, Jennings et al. conclude that
the more complicated solutions are not real modes, but the
result of miscalculation by the numerical algorithm. Presum-
ably, this work was motivated by experiments involving
warm plasmas, in which Landau damping rates consistent
with the single-wave approximation had been observed, so
the complicated solutions were not investigated further.

By choosing L <« AL and @ < R, we approach the limit
where Dubin’s theory for modes of a spheroidal plasma
should apply.” An example of a solution obtained in this
limit is depicted in Fig. 9(a); Fig. 9(b) depicts the
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(a)

>,
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(b)

FIG. 8. (Color online) (a) The axial electric field, 6E. ,, and potential, d¢,,, of a normal mode of a plasma with length L + ALy = 8.0, radius a = 0.33, and
end-shape AL; = a, note the strong mixing of the m =1 and m =2 components. (b) and (c) Two normal modes of a plasma cylinder with length
L+ ALy = 14.0 radius a = 0.5, and end-shape given by Eq. (42) with ALy = 2a. (d) and (¢) Two normal modes of a plasma cylinder with length
L + ALy = 14.0 radius @ = 0.5, and end shape given by ALy = a. In (a)-(e), the domain of each plot is the interior of the plasma, and the radius of the trap is

R =1.0.

corresponding Dubin mode for comparison. It should be
mentioned that the convergence of the solutions for spheroi-
dal plasmas is slower than for long, cylindrical plasmas; that
is, for a given number of basis functions, the mismatch at the
sample points {ry, 7,..., rp} tends to be larger. While
Fig. 9(a) represents the limit of our computational capabil-
ities, we expect that if many more basis functions could be
retained, the mismatch would tend to zero without significant
change in the appearance of the mode potential. However,
the high-k features appearing in the electric field could be
artifacts of the incomplete convergence.

VI. MODES OF A NEARLY SPHEROIDAL PLASMA

Thus far we have used numerical solutions to investigate
the effect of degeneracy on the modes of a cold cylindrical
plasma with rounded ends. In this section, we exploit the fact
that analytic solutions are known for the modes of a cold,
magnetized, uniform-density plasma of spheroidal shape (the
Dubin modes) and use perturbation theory to investigate the
mixing of low-order, nearly degenerate Dubin modes.

A cold non-neutral plasma, which resides in a quadratic
trap potential and has dimensions small compared to the dis-
tance to the electrodes, evolves to thermal equilibrium shape

that is a uniform density spheroid.>® Here, we use perturba-
tion theory to understand how small deviations of the trap
potential from quadratic change the spheroidal shape and
mix nearly degenerate low-order Dubin modes. We work out
the general form of the mode-mode coupling and examine
the mixing of the axial center-of-mass (CM) mode with
higher-order modes as an example.

In the axial CM mode, the spheroid oscillates as a whole
along the magnetic axis and with each particle in the plasma
moving in the axial direction according to

oz(t) = ecos(w,t), (60)

where ¢ is a constant amplitude and . is the axial trap fre-
quency, determined by the harmonic external trap potential
4Py (r,z) = (1/2)mw?(z* — 1? /2). Here, we consider a per-
turbation A¢(r) to the external potential,

1 1
q(pexr(ra 07 Z) = Emw? (Zz - Er2> + qA(p(i‘, 87 Z)' (61)

For the CM mode, the resulting frequency change (in
the absence of degeneracy) can be worked out with a fairly
simple argument. For each particle in the plasma, the axial
equation of motion is
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FIG. 8. (Continued)
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J#i

where G is the Green’s function satisfying V>G = 6(r; — ;).
Assuming that G has axial translational symmetry, so that it
depends on z; and z; only through the combination z; — z;, we
sum over the N particles to obtain expressions involving the
center-of-mass position, Z,

821

d*z N OAo(r;
5= wZ "Z o(ri) (63)

T Nm&

i=1

If we now assume that the mode in question causes positions

to vary according to r; = rj + ¢cos(wt)z, we can use this
expression in Eq. (63) to obtain

N 92
2_ 2 q Za Ag(rj)
@ = més Pzy ¢

Furthermore, since A is already small, we can neglect the
shape change of the equilibrium and sum over equilibrium
positions in a spheroid. For example, if

rﬂ

1 [ee)
gAp = Emw_} z; B nz Pa(cos 0) (65)

(a spherical harmonic expansion, with R the distance to the
trap electrodes), then Eq. (64) implies

(> —a*) 9

6 a
2_ 2
O~ = o 1+§ﬂ4T ? T+ s (66)

where 2a and 2b are, respectively, the diameter and length of
the plasma spheroid.

This simple result provides a useful check for the follow-
ing more general results. However, in particular, it neglects
degeneracies between the CM mode and other modes. There
are many such degenerate modes, each occurring when the
plasma spheroid takes on a particular shape. A list of some of
these modes is provided in Table I.'> The mode numbers /
and m refer to the spheroidal harmonic of the given mode
potential,” and the parameter o = b /a gives the plasma shape
for which degeneracy with the CM mode occurs.

We now turn to the affect of perturbations on the mode
eigenfunction (which must be determined using the above
approach), including the effect of degeneracies, for general
spheroidal normal modes. To do so, we employ the integral
operator formalism introduced in Sec. II [Eq. (19)], where
the normal modes of the axial electric field JE. ,(r) obey the
eigenvalue equation

OG(r,r'

WP OE, () = — Jd3r’w2(r’)¥5Em(r’). 67)
' P 0z07' ’

As discussed previously, the integral operator appearing on

the right-hand-side is Hermitian with respect to the inner

product (fi,f2) = [d’ray(r)fifa, so that its eigenfunctions
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FIG. 8. (Continued)

form a complete orthogonal basis with respect to this inner
product. However, as this is an integral operator, these eigen-
functions are not necessarily continuous functions. In fact,
for a cold plasma with a sharp boundary, JE. ,(r) is discon-
tinuous across this boundary. Since the perturbed external
potential changes the shape of this boundary, the following
perturbation theory is somewhat novel in form.

In the cold-fluid limit considered here, the perturbed
potential Ap(r) causes a shape change to the plasma volume,
V as shown in Fig. 10. The volume integral in Eq. (67) must
be carried out over this volume. In order to apply perturba-
tion theory, we inscribe a spheroid with volume V) inside V
(see Fig. 10). The volume difference AV =V —V, is
assumed to be small. We then break the integral in Eq. (67)
into integrals over V and over AV,

/
wzéEz,m(l') - _ J Brow? oG(r,r )5Ez,u)(r/)
Vo

P 9z07

OG(r,r’)
| pp,2 06T T) /
Jvod o, —5 57 0E0(r).  (68)

We treat the second integral as a small perturbation. To do
so, we expand JE. ., (r) in the eigenfunctions of the first inte-
gral operator for the spheroid Vj, with the following proviso.
As previously noted, the eigenfunctions have distinct forms
inside and outside the spheroid, which we refer to, respec-
tively, as " (r) and y°“(r) (where n=1,...,00). We
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choose to represent 0E. ., (r) only in terms of the inner eigen-
functions /" (r), extending their functional forms beyond Vj
into AV. These eigenfunctions have the form e™f(r,z),
where f is a finite polynomial in 7 and z; we assume (without
proof) that such polynomials form a complete set for pertur-
bations in the region AV. Thus, we write

M 00
OE-0(r) = anly + > ety (69)
n=1

m=M+1

where the coefficients a, are of order unity and |¢,| < 1. For
M = 1, we will obtain results for nondegenerate perturbation
theory, and for M > 1 we will obtain results where M modes
are nearly degenerate.

Substituting Eq. (69) into Eq. (68) and dropping small
terms yields

M 00
(St 3 k)
n=1

n=M+1

00
_ 2 in 2 in
- § :wna”wn + § : Con‘gﬂwn

n=1 n=M+1

2 = 3./ >’G /
oY | e ao

where the spheroidal mode frequencies @, are eigenvalues
obtained from the equation

2 2 3. oG /
R = o} | P . an

Note that solutions of this integral equation yield " (r) for
r € Vo and ¢ (r) for r ¢ V. If we now take an inner prod-
uct of Eq. (70) with respect to the M lpf;' functions over
volume V) and use their orthogonality, we obtain M homoge-
neous equations for the coefficients ay, ..., ay:

w | e | el

(0 —w7)a :—a)zza Yo sy 020z

me b ! 30 g2

J Priyi(e)]
0

(m=1,...M). (72)

Symmetry of G with respect to interchange of r and r’ allows
us to write

. oG .
2 3 inx 3 in
op| )| e

. oG .
.2 3 in 3. ink ./
=, JAvd ) (r) Jvod r g Yo (r')

=—wfnj ) 73)
AV

where in the last step we use Eq. (71) and note that the
region AV is outside Vj so that the result of the integration
over r’ is Yo', the outer spheroidal eigenmode. Thus,
Eq. (72) becomes
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FIG. 9. (Color online) (a) The axial electric field, J6E.,, and potential, d¢,,, of a normal mode of a plasma with length L + ALy = 0.401, radius a = 0.200,
and end-shape given by ALy = 2a. Note that this plasma is nearly spherical; the central cylindrical section of the plasma is only one four-thousandth the length
of the plasma at r = 0. The radius of the trap is R = 1.0. (The convergence in the parameter regime L < Ly, a < R is relatively poor compared with that for
long cylindrical plasmas, so the fine-scale ripple in the electric field could be an artifact of the incomplete convergence.) (b) One of two (I = 3, m = 0) modes
of a perfectly spherical plasma in the limit R — oo. Note the similarity between these modes.

J Py () (r)
AV

| arlwzor
Vo
(m=1,...M). (74)

M
(0* — 2)ay, = o, Zan
n=1

For the case of nondegenerate perturbation theory (M = 1),
Eq. (74) implies that

2 3., in. out*
a)nj ary iy,
o — o = —A% —. (75)
3 in
|, el
Vo
TABLE L. Location of cylindrically symmetric (m = 0) spheroidal mode

degeneracies with the (1,0) center-of-mass mode (in the range 0 < o < 100)
for1 <1<8.

[ o

4 0.6329
5 2.6295
6(1) 0.1781
6(2) 7.9490
7(1) 0.6261
7(2) 23.4352

For the CM mode, we can check this result by comparison
with Eq. (66). To do so, we require the change in shape of
the plasma due to an external potential perturbation A¢ of
the form given by Eq. (65). This is worked out in Appendix
B. We also require /" and /*** for the CM mode. According
to Eq. (B6), /" = 1, while y/° is given by

our _ 0

"pn _a_Z

[b£2Q(1)(<§1/d)]’ (76)

where d = Vb? —a? and &, and &, are spheroidal coordi-
nates’ related to 7 and z by

AV

FIG. 10. Perturbed plasma (gray) together with a spheroid of volume V)
(white) inscribed within the plasma. The small volume difference is AV.
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z=8&, rF=(E-d)(1-8), (77)

and Q7 (x) is an associated Legendre function with branch
cuts chosen, so that Q7 (x) — 0 as x — oo. When these
results are applied to Eq. (75), we do obtain Eq. (66).

The first order corrections to the eigenfunction are also
determined by Eq. (70). Taking an inner product with respect

to ", where m = M + 1, ..., oo yields
2 2 “h JA o’
v
(0" — w;,)em = a, N
n=1 <[ d r|¢i:l"
Vo
(m=M+1,...,00). (78)

Thus, 8m is small provided that AV is small and
(w? — @2,)/@?, is not small. Of course, this latter condition
breaks down at mode degeneracies, which is why, in such
cases, any degenerate modes must be included in the set of
M modes that have order unity contributions to 0E. . For
degeneracy, the analysis is somewhat simplified by employ-
ing orthonormal eigenmodes such that

J Prly)’ = 1. (79)
Vo

Then, for the case of a single degeneracy (M = 2), Eq. (78)
implies that

(0% — @ = V)0 — 0} — Vo) = ViaVay, (80)
where
V= wfj Ay (81)
AV
Using Eq. (A16), V;; can be written as
2nd (b
>
@; 1—o2 Z 0(b
1
X J déan(éz)tﬁ (&1 = b, &)W (& = b, &),
~1
(82)

where the coefficients A, are given by Egs. (A4)—(A10). At
degeneracies, we find that Vi, = V3, (although away from
degeneracy this is not true), so that Eq. (80) predicts real
mode frequencies. Note that since V;; is small, the right-
hand-side of Eq. (80) can be neglected, except near the
degeneracy, where the equation predicts an avoided crossing
since V1,V3; > 0. An example is shown for the CM mode in
Fig. 11. According to Table I, the CM mode is degenerate
with  a  (I,m)=(4,0) mode when the shape
oo=b/a=0.6329.... Evaluation of V;, where i,j=1,2,
mode 1 being the CM mode and mode 2 the (4,0) mode,
using Ap(r, z) given by Eq. (65), implies at o = 0.6329,

: '>, (83)

w’a? a’
V=5 (—0.7193ﬁ4+0.4620ﬁ6ﬁ+
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[0

FIG. 11. (Color online) Avoided crossing between CM mode and (4,0)
mode taking s = w?/100 and B, = 0 for n # 5.
: ) ;o (84

) (85)

The resulting frequencies are plotted in Fig. 11 for o near
0.6329, assuming that only f5 is nonzero. The form of the
(1,0) eigenfunction is strongly modified near the degeneracy.
According to Eq. (78), at the center of the avoided crossing,
the mode OE, becomes an equal mixture of the (1,0) and
(4,0) modes, as shown in Fig. 12. Viscous damping of the

602(12 2
Vi =2 ( 1194[34—1—06685/36R2

Vip =V =

w’d® a’
o <—0.9674ﬁ5 + L1075 2+

1.0

0.5

S 00

e

0.5

-1.0

1 I 1 1 1 L I L 1 1 L I 1 L L L 1 1 L 1 Il
00 02 04 0.6 0.8 1.0
rla

FIG. 12. (Color online) Equal admixture of CM mode and (4,0) mode due
to degeneracy where o = 0.633.
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CM mode would display a strong peak around the degener-
acy due to this mixing.

However, there are many other degeneracies with the CM
mode and the (4,0) mode over the range of « plotted in the fig-
ure. Some of these degeneracies with the CM mode are shown
by arrows on the plot. In principle, they would also create
avoided crossings, greatly complicating the plot. Since there
are a countably infinite number of modes, avoided crossings
must occur on a dense set of o values, which could obviate the
predictive value of our perturbative approach. However, most
of these degeneracies are with modes that have highly dispar-
ate spatial scales compared to the low-order CM mode. One
can show that if the perturbed value AV has a smooth shape,
then V;; — 0 as the spatial scales of modes i and j become
more disparate. Specifically, for a perturbation by a cylindri-
cally symmetric potential A given by Eq. (65), if {; is a (1,0)
mode and y; is a (1,0) mode, then the only f, terms in the
potential that contribute to V;; are those with

n>1—1+1; (86)
and at degeneracy where V;; =V,
n>|1—1]+1. (87)

Thus, if ’l —f‘ > 1, only very high-order multipoles A¢
contribute to V;; In general, Eqs. (A11) and (87) imply that,
to lowest order in 3, and a/R,

ay =1l

Vi () Brea, (88)
for |/ —I] > 1. For small B, and/or a/R and large |/ — 1],
this implies that the avoided crossings are extremely narrow
and can be neglected.

Vil. VISCOUS DAMPING

In the low-temperature regime that we have in mind, the
phase velocity of any traveling wave comprising a mode is
large in comparison to the thermal velocity, so Landau
damping is negligible. Instead, the modes are damped by vis-
cosity. (The contribution to the damping from heat conduc-
tion is higher order in the ratio of the thermal velocity to the
phase velocity, so we ignore this contribution here.'®)

Here, we calculate an expression for the viscous damp-
ing rate, assuming that the damping is weak, so that perturba-
tion theory can be used. With viscosity included, the
momentum equation (12) takes the form

00 10 AoV,
—immnyoV,, = —qng a(/’w +*8f <1mn0CJ_ or )
4 0 00V 4
38 (’””"C or ) (89

J rdrdza)lz7 (r,2) [(ZCH /3) (55E,0(2)/62)2 +
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where ( is the cross-field kinematic viscosity and (| is the
parallel kinematic viscosity. Poisson’s equation (10) and
the continuity equation (11) remain unchanged. We define
the parameters o = (. /(owL}) and oy =, /(wLj), where L
and L, are the axial and transverse scale-lengths of the
mode. For a weakly damped mode, these are small parame-
ters. We thus expand the mode and its frequency as perturba-
tion series, keeping only terms of zero- and first- order in ocH
and oy:  Ong = (3nw + 5nw ;o OV, 5V ro + 5V~ o
5(/)(0 ~ 5% + 5(pw>, and o = 0® — iy, Together 5n(f,)§,
5Vz7w, and 5q)w satisfy the inviscid fluid equations for a
mode with frequency w®. To first order, the viscous mo-
mentum equation (89) can be rewritten as

0
—zwmno(éV + 5Vw )= 4Ny (5@% + 5‘:% )

19 0 (q 950
+;5 [mOQ(‘? (la) 0z

40 0 ( q 950
30z l’“’ﬁ'&(z o )|

(90)

Insertion of this expression into the continuity equation (11)
gives dny, in terms of d¢,, . Poisson’s equation then becomes

10 35q0w) +825<p8)
r (?r or 072

0 w 66¢w _%fz 2a>u* 65¢
9z 0)2 S0z oz\ 00 9z
Lo o]t o (9500

oz ror | w3 ar \ oz
L4 (ia% 85<p5?)>

3022\ w3 922 )

Here, we have used the fact that 5405(? ) and »© together sat-
isfy the inviscid mode equation (13), which 1mphes that the
zero-order terms cancel. Multiplying Eq. (91) by 5q)w , inte-
grating over the entire domain of the trap, and mtegratm%T
each term by parts twice eliminate the terms involving 540(0
[again, by virtue of Eq. (13)], and we are left with an expres-
sion for the first-order viscous correction to the frequency in
terms of the inviscid approximation to the mode,

oD

(C/2)(00ES) for)”

J rdrdza? (7, z)oE)?

; 92)

,(
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where 0E\) = —8(3(;)((3 ) /0z. This expression is purely real and
non-negative and gives the viscous damping rate of the mode.
Due to the mixing of degenerate waves, the axial and
transverse scale-lengths, L and L, of even the least-damped
modes can be much smaller than the corresponding dimen-
sions of the plasma. As a result, the damping of these modes
is significantly greater than one would predict based on
the single-wave approximation,'*'*'® which takes the
mode potential inside the plasma to be given by a single
Trivelpiece-Gould wave with wavenumber &, = mn/L
[1 — O(R/L)]. For example, according to Eq. (92), the mode
displayed in Fig. 8(a) damps at the rate 7= (27.0{,
+0.325() /R?. By comparison, if this mode is approximated
by its largest-amplitude Trivelpiece-Gould component
(m =1, in this case), the smaller rate = (2.94(;
+0.0930¢ ) /R? is obtained.

VIll. SUMMARY

We have calculated several azimuthally symmetric, lon-
gitudinal normal modes of a cold, magnetized single-species
plasma column. Each normal mode is not a standing
Trivelpiece-Gould wave with well-defined wavenumber but
is instead a more complicated superposition of many such
waves, often exhibiting sharp features along the resonance
cones corresponding to the mode frequency. We have also
analyzed the mixing of Dubin modes on a cold, magnetized
plasma of nearly spheroidal shape, using perturbation theory.
We find that a slight deviation of the plasma boundary from
the spheroidal shape can induce strong mixing between mul-
tiple Dubin modes when the aspect ratio is such that these
modes are degenerate. The mixing effects described here
occur only when the Debye length is small in comparison
with the scale-lengths characteristic of the mode. In this
cold-fluid regime, the modes are damped by viscosity, and
this damping is enhanced by the presence of large wavenum-
bers in the admixture for the mode.
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APPENDIX A: PERTURBATION OF A SPHEROIDAL
PLASMA BOUNDARY

In this appendix, we evaluate the change in plasma
shape created by an external potential perturbation Agp given
by Eq. (65). This potential can also be written in cylindrical
coordinates (p, z) as

quoext(rv Z) - %mwz [%Z(Z — 3)’2)
ﬁ4 4 22 3 4
—|—ﬁ 7t —3zr +§r +---)l. D

Within the plasma, this potential is cancelled by a space-
charge potential A(p due to the change in shape,
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A(p;" = —A@,,- (A2)

Since A(p;,” is due to a small change in shape, it is a solution
of Laplace’s equation due to a surface charge distribution
caused by the shape change. This effect is most easily
described in spheroidal coordinates (&, &,). In these coordi-
nates, inside the plasma, the cylindrically symmetric solution
to Laplace’s equation is

GAg) = —may Y AP [DPL(E), (A
where the coefficients A, are determined by Eqgs. (A1) and (A2),

3 4
A d ( B3+ ﬁs + ﬁ7d ")7 (A4)

a* d2
Ay = 1R? <6ﬁ4 + 5B — R2 . > , (AS)
d3 az 7 dt
(ﬂs t3 ﬁi §ﬁ71?+ ")» (A6)
4d* d?
A 11 1 . A
4 = 385R2< ﬁ4+ 5ﬂ6R2 >a ( 7)
Ad> (Bs B
%ﬁ(a+@ﬁ+ (A8)
8d°
== e A
6 231R4 (ﬁ6+ )7 ( 9)
i (B +--), (A10)
7T 429R5
d"
A, =] B+ (A11)
Outside the plasma, the Laplace solution is
(A12)

gApy" = —m? Y B,Q)(& /d)Pa(E).

The outer and inner solutions are connected by the change in
shape of the plasma boundary, which can be described as a
curve &, (&) = b+ A (&), where A& (&) is given by

CnPn(€2)
A = — Al3
&1(&) Zn:bz_dzgg (A13)
The coefficients C, are determined by the solution to
VAg, = —4nengA&; (&) — b), (A14)

where n is the plasma density; the right-hand side represents
the surface charge due to the shape change. Using Eqgs.
(A12) and (A13) in Eq. (A14) and matching potentials across
the boundary yields

o> d

z

o _d . o) d
R OOb/d) ™ T ORbfd) 1

C, = — (A15)

where w), is the plasma frequency, and we have used the
well-known relation between w. and w, for plasma
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spheroids, Eq. (BS). Note that the coefficients A,, B,,, and C,
appearing in these appendices are not the same as those
appearing in Secs. IV and V.

Finally, in order to complete integrals over AV appear-
ing in V;; we note that

Lvd%:rndcpj dey (b - PE)AE (&)

d 0%(b/d) !
T 1 - 222 Q0(b/d) AHJ d¢J71d€2Pn<§2>7

(A16)
where we have used Eqs. (A13) and (A15).

APPENDIX B: NORMAL MODES OF A MAGNETIZED
SPHEROIDAL PLASMA

In this appendix, we collect several known results for nor-
mal modes of a magnetized spheroid. In the B — oo limit, the
dispersion relation for the magnetized plasma modes is

o> — & Y
&E =
o2 —1

P =P (o (e — &)%), and

2 /
e

LEL (B1)
Pl Ql

where ¢ =1-— coz/la/)2
OF = O (o/(a® — &5) 7).
Mode potentials inside and outside the spheroid are
o™ = P}'(&1/d)P]' (&)™, (B2)

P?"(];/c?) m m eimd)
Q;n(b/d) Pl (él/d)Pl (62) )

where b = b/\/65,d = \/b" — a2, and (¢1, &) are modified

spheroidal coordinates defined by

r=8& G, P =(8

Equation (B1) can be written as a polynomial in w? with
Int[(/ — m + 1)/2] real positive solutions for w?. The inner
potential J;, can also be written as a multinomial in r and z
of order / (multiplied by ¢™?). The eigenfunctions 1/, used
in Sec. VI are proportional to d¢/0z.

5(/)0141‘ _ (B3)

—d*)(1-&). (B4)
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For the (1,0) mode, Egs. (B1) and (B2) simplify to

w: _ Qi(b/d)
e (BS)

Sp™" = z. (B6)

There are two (4,0) plasma modes, with frequencies given
by solutions to the polynomial equation

w*[8a* (y — 10) + 1262(2y — 5) + 3]

+ 20’ @) [400 — 1207 (y = 5) = 3y] 43w, (7 — 202%) =0,
(B7)
where
b0y (b/d)
=", B8
a0y (b/d) (B9

For both modes, the inner potential is

S =280z" + 105631 — 1202% [Tesr? + 2(b* — e3a°)]
+120e372(b* — £30%) 4 24(b* — e3a®)*.
(B9)
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