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Abstract

Enhanced Particle Slowing from 1D Long-Range Like-Sign Collisions*
Francois Anderegg, C. Fred Driscoll (University of California, San Diego)

Recent theory [1] predicts enhanced collisional slowing rates for like-sign
particle collisions in strong magnetic fields, in density and temperature regimes
where binary Boltzmann collisions dominate over statistical Fokker-Planck
collisions. Here, the enhancement 1s from "long-range" collisions, with impact
parameters greater than the cyclotron radius. For protons (or anti-protons) at
n~10°cm™ and B ~ 3T, the enhancement is large for 7< 1.eV; and for Mg"
ions at n~10"cm~ studied here, the enhancement is large for 7< 0.01eV.

Prior experiments have indirectly measured Mg" and MgH™ collisions causing
damping of plasma waves well into the enhancement regime [2], obtaining
damping rates consistent with enhanced inter-species collisional drag.

Two recent experimental campaigns have utilized LIF to directly measure Mg"
test-particle distributions f(v) colliding with warmer equilibria, with test-particle
energies 7> 0.1eV. Here, the measurements are consistent with the predicted
factor-of-two enhancement, but the (increasing) rates have not yet been
measured into the strong enhancement regime.

[1] D.H.E. Dubin, Phys Plasmas 21, 052108 (2014)

[2] M.Affolter et al, Phys. Rev. Lett 117, 155001 (2016)
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Novel effects in Slowing due to Long Range Collisions

The UCSD group has developed wide-ranging theory and experiments describing transport from
long range collisions with impact parameter p larger than the cyclotron radius r,

These collisions are in addition to the . ¥ velocity diffusion
standard short-range collisions with b<p<r, N

\
In nonneutral plasmas the long range collisions cause: Ly, 00 V%

A

* Cross-field diffusion enhanced by 10x T~ s velocity diffusion
* Heat transport enhanced by 100x, independent of B \/
* Viscosity enhanced by 10°x, increasing with B 2

We have now shown that long range collisions also can strongly enhance collisional slowing Vi
D. Dubin, Phys. Plas. 21, 052108 (2014); M Affolter et. Al, Phys. Rev. Lett. 117, 155001 (2016)
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A new fundamental length scale ¢ was identified: d = b(Vz /bzvsz) b=e" /T, v=NT/m

For p<d: long range collisions are two-body and point-like; particles either reflect or pass by
For p>d: multiple weak collisions occur simultaneously; particles diffuse in velocity

The short range Coulomb logarithm (blue) is enhanced by tw% antiproton slowing, n=10"cm>,8=3T_
new terms from long-range collisions (brown). This applies to
Penning trap plasmas for both matter and antimatter, for

some astrophysical plasmas, and even for the edge =0
region of tokomak plasmas. 10/

short-range

V, =Jmnvb’ InA; where InA = {h In(d/r.)+21n(A, /d)+ %ln(rc /b)},

h =15.899 for repulsive collisions; /=0 for attractive collisions V)
(&




Measure particle velocity diffusion

(T

f(v)

* Use electronic spin orientation of magnesium ion
to label (tag) a group of ion.

e Tag part of the parallel velocity distribution (shown in red).

* Observe tagged particle relaxing with the background due to
collisions v = \/; nvb InA



e Accurate (but indirect measurements) were performed using wave damping
due to drag between species:

M. Affolter, F. Anderegg, D .H.E. Dubin and C.F. Driscoll, "Measurements of long-range enhanced collisional

velocity drag through plasma wave damping", Physics of Plasmas 25, 055701 (2018).

M Affolter, F. Anderegg, D.H.E.Dubin and C.F. Driscoll, "First Test of Long-Range Collisional Drag via
Plasma Wave Damping," Phys. Rev. Lett 117, 155001 (2016).

* Also, similar measurements were made in neutralized plasma.

J. Bowles, R. McWilliams, and N. Rynn, ”Direct measurenet of velocity space transport in fully ionined
plasmas" Phys. Rev. Lett 68, 1144 (1992).

h = 5.899 same sign of charge
Subtle Coulomb log effect / h = 0 for attractive collision

v = \/; nv b InA lnAélnm[n:n/[b ]llmnm{n;a;[ ]J+21nm£11ﬁim}/

Classica/ 3D 1D /ong range 1D /on3 range
(short range)  Boltzmann — Fokker-Plank

D.H.E. Dubin "Parallel Velocity Diffusion and Slowing-Down Rate from Long-Range Collisions in a
Magnetized Plasma," Phys. Plasmas 21, 052108 (2014)



http://nnp.ucsd.edu/pdf_files/Affolter_2018_LongRange_Damp_PoP.pdf
http://nnp.ucsd.edu/pdf_files/Affolter_2016_FirstTest.PDF
http://nnp.ucsd.edu/pdf_files/Affolter_2016_FirstTest.PDF
http://nnp.ucsd.edu/pdf_files/Dubin_slow_pop_21_052108_2014.pdf

Magnesium ion plasma in Penning-Malmberg trap
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Test particle with large velocity particle removed

This Is what we have done THhs i1s what we
coould like Yo do
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* Un-Tag for 50ms (ie remove large velocity particle)

* Wait 30ms
* Search n,y/, for 8ms
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Initial Density and Temperature of test particle vs tagging wavelength
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e Wait 30ms
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The tagging laser removes high velocity particle from +1/2 state leaving “cold” test particle




Temperature of test particle vs time

lgnore detail of f(v) consider temperature T(t) only
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Test particles in +1/2 state equilibrate
with the rest of the plasma

Test particles in +1/2 state re-heat
due to collisions with the rest of the plasma

Exponential relaxation

Define collisionrate V= l/Tre_heaﬁng



D.H E. Dubin, Phys. Plasmas 21, 052108 (2014)

Collision rate theory prediction

Inm (x) = ln(max[l,x])

. / — 712 h = 5.899 same sign of charge
Vs =N nvb InA / h = 0 for attractive collision
min| 7 ,A A
InA=%Inm [ : D] + hlnm +21nm 2
max[ ] max[d,rc]

\ ~ AN ~ N\ _

Classical 3D collisions 1D /ong range 1D /on3 range

(short ran3e> 2-body "Noisy  FokKer—Plank
. Boltzrann collisSions
r. . cyclotron radius
p<d p>d

b : distance of closest approach

A, : Debye length Impact parameter

N
v
d : new scale length d= b [ b ]

Impact parameter

For p<d: long range collisions are two-body and point-like; particles either reflect or pass by
For p>d: multiple weak collisions occur simultaneously; particles diffuse in velocity



Coulomb log vs temperature

min| 7 ,A A
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Slowing down rate theory and experiments
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1D long range Fokker-Plank collisions enhance slow down rate over the short range 3D case.
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with the rest of the plasma.

1D long range Fokker-Plank collisions enhance slow down rate
over the short range 3D case

slow down rate v, [s'1 ]

h = 5.899 same sign of charge
VS =TT nv b2 InA h = 0 for attractive collision
min| 7, A / d
InA =4%1nm [C D] +hlnm| ————— [+ 2Inm| —F2——
b max[b,rc] max[d,rc]
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