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Abstract. We present the first detailed experimental measurements of the Salpeter collisional
enhancement factor in correlated plasma. This factor is predicted to enhance the nuclear reaction
rate in dense correlated plasmas such as in giant planet interiors, brown dwarfs and degenerate stars.
Recent non-neutral plasma theory establishes that it also applies to the perpendicular-to-parallel
collisions in magnetized plasmas. The enhancement is caused by plasma screening of the repulsive
Coulomb potential between charges, allowing closer collisions for a given particle energy. The
enhancement factor is large when the plasma correlation factor Γ is larger than unity, scaling as
g(Γ)' eΓ. We perform measurements of collision rate in laser-cooled magnesium ion plasmas with
density n∼ 107cm−3 and temperature 2.5×10−6 < T < 1 eV, resulting in 0 < Γ < 25. We observe
that at high Γ (i.e. low temperature), the collision rate is increased by a factor up to 109 over the
uncorrelated theory prediction, consistent with the Salpeter enhancement.
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INTRODUCTION

We present theory results and measurements that use non-neutral plasmas to model
aspects of the physics of nuclear fusion reactions in dense, correlated plasmas, such
as in giant planets, degenerate stars, and laser fusion plasmas. Nuclear reaction rates in
dense correlated plasmas are, according to theory, enhanced compared to rates predicted
for reactions at lower density. In the astrophysics community, this theoretical effect
is known as the Salpeter enhancement [1]. Here we use an analogy between screened
nuclear reactions in dense plasmas and perpendicular-to-parallel energy equipartition in
strongly coupled and strongly magnetized non-neutral plasmas [2, 3].

In a magnetized plasma with a perpendicular temperature T⊥ and a parallel tempera-
ture T‖, we consider the perpendicular-to-parallel collision rate ν⊥‖ defined as:

d
dt

T⊥ = ν⊥‖(T‖−T⊥), with (1)

ν⊥‖ ≡ nvb2 4
√

2 I(κ) g(Γ) . (2)

Here, the “bare” collision rate 4
√

2 nvb2 is modified by a dynamical factor I(κ), depend-
ing only on the magnetization parameter

κ≡
√

2 b/rc ;



and modified by an equilibrium correlation factor g(Γ), depending only on the correla-
tion parameter

Γ≡ e2/aT .

(All symbols are defined below.) Laser cooling enables ion plasma equilibria well into
the cryogenic regime, with T = 1eV → 10−5eV, resulting in I(κ) ≈ 2 → 10−5 and
g(Γ) ≈ eΓ ≈ 1→ 109. The measured ν⊥‖ agree quantitatively with standard collisional
theory in the high temperature plasma regime; and agree quantitatively with the adia-
batic invariant prediction for magnetization suppression I(κ); and are consistent with
the “equilibrium” Salpeter enhancement for weak correlations Γ <∼ 10. Moreover, the
measured collision rates show the expected independence of the dynamical parameter κ

from the equilibrium parameter Γ.

THEORY

The theory of collisions in strongly magnetized plasma was developed by O’Neil and
colleagues [4, 5], with theory and simulations spanning the full range of magnetization.
Separately, the equilibrium theory of correlation-enhanced collisions was developed by
Salpeter [1]; and was adapted to magnetized plasmas by Dubin [3].

Here, we briefly review the results using the perspective and notation of Ref. [3],
that is, using CGS units and expressing temperature in units of energy. The (single
component) plasma equilibrium has density n and temperature T , giving thermal ve-
locity v ≡ (T/m)1/2, distance of closest approach b ≡ e2/T , and interparticle spacing
a≡ (3/4πn)1/3. Magnetization gives dynamical parameters Ωc≡ eB/mc and rc≡ v/Ωc.

The perpendicular-to-parallel collision rate of Eq. (2) represents an integral over the
relative velocities of colliding particles. In the “normal” plasma regime (T > 10−2eV,
rc� b, κ� 1, Γ� 1), integration gives the “classical” result

I(κ) =

√
2π

15
[ln(rc/b)+0.75] , g(Γ) = 1 , (3)

resulting in the “normal” nonneutral plasma collision rate

ν⊥‖ = nvb2 8
√

π

15
[ln(rc/b)+0.75] ∝ nT−3/2. (4)

The enhancement of 0.75 is obtained in Ref. [5].

Strong Magnetization

At lower temperatures (T < 10−3eV), the cyclotron radius rc becomes comparable
to the distance of closest approach b, and the collision time τ‖ ≡ b‖/v‖ becomes large
compared to Ω−1

c . A two-particle adiabatic invariant E⊥ ≡ E⊥1 +E⊥2 then constrains
the collision dynamics and decreases ν⊥‖. The collision integral can then be expressed
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FIGURE 1. Graphic description of the integrand of Eq. (5) showing exponentially decaying Maxwellian
particle energy distribution and the exponentially growing cross-section σ. The product of the particle
distribution and the cross-section gives rise to the Gamow peak. Shifting σ by ∆E gives enhancement
exp(∆E/T ).

as the product of a Maxwellian with the dynamical cross-section σ(E‖), as

ν⊥‖ =
∫ dE‖

T
exp

(−E‖
T

)
σ(E‖) , with (5)

σ(E‖) ∝ e−πΩcτ‖ ∝ e−(πc/E‖)3/2
. (6)

The integrand peaks at the Gamow energy EG ≡ 1.23(κ)2/5T , as shown in Fig. 1, and
various approximate expressions have been obtained for I(κ). In the regime of interest
here,

ν
no corr
⊥‖ = nvb2 4

√
2 I(κ) (7)

with
I(κ)≈ c e−2.044(κ)2/5

(8)

where c' 1.5 in the regime of interest.
The collision rate in this regime was measured in a pure electron plasma contained in

a cryogenic apparatus [6]. Figure 2 shows the measured collision rate plotted versus tem-
perature (lower axis) and versus κ (upper axis); the collision rate is strongly suppressed
as κ gets larger than 1. It is worth noting that particles contributing to the collision rate
are at energy EGamow = 1.23κ

2/5T , for a value of κ = 20; this corresponds to particles
of velocity 4v, that is, less than 2% of the particles participate in such (rare) collisions.
Here the cyclotron energy is released only by rare energetic collisions, similarly in nu-
clear fusion reactions where the energy stored in the nuclei is liberated only by rare
energetic collisions.



T  [K] 

κ

I κ( )

T −32

FIGURE 2. Adapted from Ref. [6]. Collision rate versus temperature (lower axis) and κ (upper axis) for
an uncorrelated pure electron plasma with B = 6.13T , n = 8×108cm−3. The solid theory curve is Eq. (7),
the T−3/2 scaling of Eq. (4) is shown with the long dashed line, and the strong magnetization suppression
I(κ) in the collision rate of Eq. (8) is shown by the arrow.

Correlations

Correlations enhance the perpendicular-to-parallel collision rate through screening
effects, by reducing the amount of parallel energy required by two ions to come within a
distance ρ. In the absence of shielding the energy required is E‖= e2/ρ; in contrast, with
Debye screening the parallel energy required is smaller: E‖ = (e2/ρ)exp(−ρ/λD) '
e2/ρ− e2/λD. In other words, screening reduces the parallel energy required to come
within a distance ρ.

In the strong coupling regime of Γ > 1, the effective shielding distance is the inter-
particle spacing, and the energy required for a collision at distance ρ < a is

E‖ =
e2

ρ
− e2

a
. (9)



This shifts σ(E‖) by e2/a, as shown in Fig. 1. Equivalently, the Maxwellian in Eq. (4) is
shifted by ∆E‖/T = e2/aT = Γ,

ν
corr
⊥‖ =

∫
dE‖

1
T

exp{−(E‖− e2/a)/T}σ(E‖)

= exp
(

e2

aT

)∫
dE‖

1
T

exp
(
−

E‖
T

)
σ(E‖) (10)

= exp(Γ) ν
no corr
⊥‖ ;

giving a collisional enhancement over the non-correlated case:

g(Γ) = eΓ. (11)

Thus the perpendicular-to-parallel collision rate is enhanced by correlation by a factor
g = exp(Γ). More precise “equilibrium shielding” calculations of g(Γ) have been per-
formed [3, 7, 8], giving results essentially identical to Eq. (11) within our experimental
range. It is worth noting that the enhancement is independent of σ(E), as in the fusion
case, where this effect is known as the Salpeter enhancement.

It is interesting to note that the inside of a giant planet has a temperature T ∼ 1eV
and a density n ∼ 1024cm−3 resulting in Γ ∼ 10; also, white dwarf stars have typical
temperature T ∼ 100eV and density n ∼ 1030cm−3, also resulting in Γ ∼ 10 [9]. At
present, our sun has a small coupling parameter Γ = 0.05, having only a small effect
on the fusion rate of the sun (g ' 1.05). Laser cooled ion plasmas can easily have
T ∼ 10−5eV and n ∼ 2 ∗ 107cm−3 also resulting in Γ ∼ 10. A non-neutral plasma can
be used to study the properties of astrophysical objects as long as the physical process
depends on the coupling parameter Γ.

EXPERIMENTS

To test the theoretically predicted correlation enhancement of the collision rate, we use
a magnesium ion plasma contained in a Penning-Malmberg trap. A description of the
apparatus can be found in Ref. [10]. The plasma density for this experiment is controlled
with a rotating wall (0.12× 107 ≤ n ≤ 2× 107cm−3), the temperature is controlled by
laser cooling (2.5×10−6eV < T < 1eV), the uniform axial magnetic field was changed
in the range of 1.2T ≤ B≤ 3T . The plasma radius is Rp ' 0.5 cm and the plasma length
is Lp ' 10 cm. The adiabaticity parameter is κ = 1 at a temperature T = 5×10−4eV and
B = 3T . The coupling parameter is Γ = 1 for n = 2×107cm−3 and T = 6×10−5 eV.

We use two different techniques to measure the perpendicular-to-parallel collision
rate ν⊥‖. The first technique directly observes T⊥ and T‖ as they relax to a common
temperature. The parallel temperature is initially increased by small oscillating voltages
applied at one end of the plasma. This causes a variation of the plasma length ∆L, with a
consequent variation ∆T‖/T ∝ (∆L/L)2, resulting in T‖> T⊥. This direct measurement is
practical only for slow rates (ν⊥‖< 100s−1) and is not accurate for low temperature T <

10−4eV since ion-neutral collisions give a heating rate which dominates the temperature
evolution.
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FIGURE 3. Measured collision rates for two densities versus temperature (lower axis) and κ (upper
axis) compared to theory with and without correlations. The correlation parameter Γ for high and low
density is also shown.

The second technique obtains ν⊥‖ by determining the frequency fosc at which axial
compressions give maximum heating [6]. A short oscillating burst (3→ 100 cycles)
at frequency fosc is applied to one cylindrical electrode at one end of the plasma. The
heating due to the burst is maximal when ν⊥‖ = c(Γ)2π fosc where c(Γ) is the specific
heat c(Γ) = c‖c⊥/(c‖ + c⊥) with c⊥ = 1 and c‖ = 1/2 + ∂Ucorr/∂T ; the correlation
energy Ucorr is defined by Eq. (4.24) in Ref. [11]. The specific heat increases slowly
with correlation, with c(0) = 1/3, c(2)' 0.42 and c(10)' 0.52.

The measured perpendicular-to-parallel collision rate is plotted in Fig. 3 for two
densities, n = 2×107 and 0.12×107 cm−3 labeled n7 = 2 and n7 = 0.12. In both cases
the collision rate is strongly suppressed when κ is larger than unity. The solid lines are
theory curves obtained from Eq. (7) using numerical values of I(κ) from Ref. [5], with no
adjustable parameters. The dashed lines are from Eq. (10). At lower density the plasma
is never strongly correlated, as shown by Γ which is also plotted for both densities.
The n = 2× 107cm−3 density data (labeled n7 = 2) have Γ > 1 at low temperatures,
and the measured collisionality is enhanced by several orders of magnitude over theory
neglecting correlations. At low density, the collision rate is measured down to a rate of
1 sec−1, setting an upper limit on extraneous collisional effects. Figure 4 shows the
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FIGURE 4. Same as Fig. 3 but for lower magnetic field. The I(κ) suppression is less in the Γ> 1 regime
resulting in higher collision rate.
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FIGURE 5. Measured enhancement g(Γ) for all the data of Figs. 3 and 4, demonstrating that g(Γ) '
exp(Γ) is independent of κ. The theory line is from Eq. (11).

measured collision rate at a lower magnetic field B = 1.2T . The correlation parameters
Γ and g(Γ) are independent of the magnetic field; in contrast κ depends on the magnetic
field. Therefore the I(κ) suppression is less in the Γ > 1 regime, resulting in higher
collision rates in the correlated regime. Here also the solid line is from Eq. (7) and the
dashed line from Eq. (10).



Figure 5 shows the measured collision rate divided by the theoretical rate neglecting
correlations, that is, the Salpeter enhancement g(Γ). The enhancement depends on Γ

but is independent of κ, as predicted by theory. The measured correlation enhancement
g(Γ) is consistent with “equilibrium shielding” theories, and no support for alternative
“dynamic shielding” effects is seen. This work illustrates how laboratory non-neutral
plasmas can be used to study high energy density plasmas where the same enhancement
applies to rare energetic fusion collisions in hot, dense correlated plasmas such as stars.
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