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Chapter 1
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This chapter describes the e↵ects of correlations on trapped plasma.
When the potential energy between neighboring ions is larger than the
thermal energy, the internal structure of trapped plasma changes, from
plasma to liquid to Coulomb crystal. These Coulomb crystals are sim-
ilar to solid state one but the inner particle spacing is of the order of
10µm, significantly larger than solid state material. The structure of
these Coulomb crystal is obtained not from x-ray scattering but from
Bragg scattering of UV light (⇠ 300nm). Correlations not only change
equilibrium properties of a plasma but also dynamical properties, in par-
ticular this chapter will describe the dramatic increase of the collision
rate in the presence of correlations.

1. Introduction

The thermodynamic state of a one component plasma is determined by its
shape, size, and coupling parameter � :
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is the radius of a sphere whose volume equal the volume occupied
by one charged particle in a plasma of density n. The coupling parameter
� represents the ratio of the potential energy between neighboring charged
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particle and the thermal energy. When � > 1 a one component plasma is
strongly coupled. Large value of coupling parameter can be achieved with
high density n, or large charge per particle q, or low temperature T .

Strongly coupled one component plasmas are believed to exist in
dense astrophysical objects such as giant planets interior (T ⇠1eV, n ⇠
1024cm�3, q = e, resulting in � ⇠ 10), white dwarf stars (T ⇠100eV,
n ⇠ 1030cm�3, q = e, resulting in � ⇠ 10).1 Strongly coupled plasmas
also exist in less dense objects if the charge per particle is large, such as
dust grain in a dusty plasma2 (T dust ⇠1eV, n ⇠ 1cm�3, q = 104 e, result-
ing in � ⇠ 10), or if the temperature is low enough in laser cooled trapped
ion plasma (T ⇠ 10�5eV, n ⇠ 107cm�3, q = e, resulting in � ⇠ 10). One
sees that these vastly di↵erent physical systems, can all have a coupling
parameter � ⇠ 10. Therefore astrophysical e↵ects depending on � can be
studied with laser cooled trapped ion, as will be described in section 3 of
this chapter.

For coupling parameter � ⌧ 1 trapped ions are in a ”plasma state”, for
� > 1 trapped ions are in a liquid state and for � & 172. trapped ions are
in a solid state called a Coulomb crystal.

2. E↵ect of Correlations on Equilibrium properties

In a trapped ion plasma consisting of many particles (N � 1), even when
the correlation parameter � is large, the mean electric potential is large
compared to the potential energy between neighboring ions.
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The mean electric potential determines the equilibrium shape of the plasma
in the trap. The plasma shape remains essentially unchanged by the pres-
ence of correlation, the correlations only change the internal structure of
the plasma, not its shape.

In the absence of correlation, the ”one” particle distribution function is
a Boltzman distribution.
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where the Hamiltonian H is:
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�
T

is the trap potential and �
p

is the plasma potential which is determined
by Poisson’s equation:
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and the canonical angular momentum P
✓

in a uniform magnetic field in the
z-direction is:

P
✓

= mv
✓

r +
eB

2
r2 (7)

In contrast, when correlations are present, the N particle distribution is a
Gibbs distribution:
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where the N particle Hamiltonian is:
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where �
T

is the trap potential and �
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the interaction potential:
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is a Green function when the image charges are included.3 In this
chapter we assume that the image charge contribution is negligible, that is
the plasma is far from the wall of the trap.
The N particle canonical angular momentum is:
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and the N particles distribution becomes:
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Useful quantities to be considered are the reduced distribution; for ex-
ample the spatial distributions are obtained by integrating over velocities,
and the N -particle spatial distribution is:
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The density is simply the first reduced distribution:

n(r) = N⇢(1)(r) (14)

The two particles distribution is:
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where g(r
1
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2

) represents the two body spatial correlations which measure
the extra probability beyond what would be expected of a completely ran-
dom distribution of finding particle at r

1

and r
2

.
Since Coulomb interaction is a binary interaction, only n(r), T and
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) are necessary to describe thermodynamic functions. No higher
order term are necessary. Figure 1 shows the correlation function g(r
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for a one component plasma for various value of correlation parameter.4
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Fig. 1. Correlation function for one component plasma.

In the absence of correlation, the correlation function is equal to zero
at large distance, and goes to minus one at short distance reflecting the
e↵ect of Debye shielding. As the correlation parameter � increases, g(r

1

, r
2

)
increases at a distance of about 1.7 Wigner-Seitz radius; for distance smaller
than one Wigner-Seitz radius g(r

1

, r
2

) decreases, indicating that short range
order is appearing in the system. These oscillations are evidence of the
beginning of a crystal lattice.
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2.1. Correlation with Small Plasmas

Early numerical simulations5 solved the following equations for N = 400
ions:
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where one can see the potential � is the same as the first term of equation
10 and that the trap potential is the standard quadratic potential of a
Penning trap. These simulations show that for small plasmas, boundary
e↵ect dominates the geometry and inside the plasma ions are organized in
a concentric shell structure.

N=400!

Fig. 2. a) Density as a function of spherical radius b) Observation of shell structure in

Penning trap.

The results of these simulations are shown on figure 2a, at low � the
normalized spatial distribution is uniform, in contrast for large � sharp
”onion-like shell” are predicted. Figure 2b is a measurement of such struc-
ture on a cloud of beryllium ions.6 The number of shells observed depend
on the number of ions N , with N = 20, 1 shell is observed and with
N = 15, 000, 16 shells are observed.
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2.2. Correlation with Large Plasmas

The influence of the surface is limited for large plasma and their interior
is comparable to an infinite size plasma. The lowest energy state for a
Coulomb crystalline structure is a Body Center Cubic (bcc) structure fol-
lowed closely by a face centered cubic (fcc) and a hexagonal close packed
(hcp). These di↵erent structures have very small fractional di↵erence of
Coulomb energies per ion, typically < 10�4. Numerical simulations using
a planar model7 suggest that one need at least 60 inter-particle spacings
to observe bulk behavior; that is N > 105 ions are necessary in a spherical
plasma to exhibit bulk properties. More recently numerical simulations of
spherical plasma8 have suggested that a bcc lattice may be present in small
sections of a plasma with as little as 15,000 ions.

The inner particles spacing of Coulomb crystals is ⇠ 10µm, therefore
Bragg scattering can be performed on them with ultraviolet light instead
of x-ray as for solid state crystals. Since Coulomb crystals contain only
a small number of ion compared to solid state crystals, the wavelength is
chosen to be resonant with an atomic transition to increase the scattering
cross-section.

Figure 3 shows the NIST trap designed to study large coulomb crystals.

Fig. 3. NIST Cylindrical Penning trap for large crystal.
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The inside diameter of the trap is 4.5cm and the magnetic field B =
4.5T. In this trap Beryllium ions can be laser cooled down to T < 1mK. The
Bragg scattering is done by an axial beam. The direct beam is deflected
to avoid saturating the CCD camera, and crossed polarizers are used to
further minimize unwanted scattering from the entrance window.9

Fig. 4. Bragg scattering rings and frequency of ring location.

Scattering pictures are shown on figure 4. The location of scattering
rings indicates that the Coulomb crystal structure is bcc. Since the scat-
tering picture are accumulated over several plasma rotations, it is not pos-
sible to distinguish a single crystal from several smaller crystals in the trap.
Similarly x-ray di↵raction on powdered crystal result in di↵raction rings.
Locking the crystal rotation to the rotating wall and strobing the camera at
the rotating wall frequency determines unambiguously that a single crystal
is in the trap. Figure 7 in the chapter describing the rotating wall technique
shows a strobed di↵raction pattern corresponding to a bcc crystal.

bcc (111) plane 
predicted spacing: 14.4 µm 
measured: 14.6 ± 0.3 µm 

bcc (100) plane 
predicted spacing: 12.5 µm 
measured: 12.8 ± 0.3 µm 

Fig. 5. Real space images of bcc coulomb crystal.

Real space images of the plasma also confirm a bcc crystal. Depending
on the orientation of the probe laser beam the (100) plane or the (111)
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plane can be illuminated as shown on figure 5. The spacing of the ions in
the (100) plane and the (111) plane are in agreement with a bcc crystal.

Summary of Correlation on Equilibrium Properties

For plasmas with N < 104 ions, the boundary e↵ects dominate and shell
structure is observed. For large plasmas, with N > 105 ions, bcc Coulomb
crystals are observed in spheroidal plasma.

3. E↵ect of Correlations on a Dynamical property

In this section, we will briefly describe theory results and measurements that
use non-neutral plasmas to model aspects of the physics of nuclear fusion
reactions in dense, correlated plasmas, such as in giant planets, degenerate
stars, and laser fusion plasmas. Nuclear reaction rates in dense correlated
plasmas are, according to theory, enhanced compared to rates predicted for
reactions at lower density. In the astrophysics community, this theoretical
e↵ect is known as the Salpeter enhancement.10 Here we use an analogy
between screened nuclear reactions in dense plasmas and perpendicular-to-
parallel energy equipartition in strongly coupled and strongly magnetized
non-neutral plasmas.11,12

In a magnetized plasma (i.e. ⌦
c

� !
p

) with a perpendicular tempera-
ture T? and a parallel temperature Tk, we consider the perpendicular-to-
parallel collision rate ⌫?k defined as:
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I(̄) suppress the perpendicular to parallel collision in the strongly mag-
netized regime of ̄ > 1. In this regime only rare energetic collisions mix
the perpendicular energy E? and parallel energy Ek.

The correlation factor g(�) enhances these rare collisions due to particle
correlations, in the cryogenic liquid regime of 1 < � < 10.

3.1. Strong Magnetization

I will briefly review the strong magnetization regime results, a rigorous
derivation can be found in reference 11. For r

c

< b , the perpendicular
energy of two particles is an adiabatic invariant E? = E?1

+ E?2

, that is
conserved by most collisions except by rare energetic (large Ek) collision.
The cross-section for sharing perpendicular and parallel energy is a function
of Ek:
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Fig. 6. Graphic description of the integrand of equation 22 showing exponentially decay-

ing Maxwellian particle energy distribution and the exponentially growing cross-section
�. The product of the particle distribution and the cross-section gives rise to the Gamow

peak. Shifting � by �E gives enhancement exp(�E/kBT ).

That is the cross-section for Ek � E? sharing increases exponentially
for large Ek. The collision rate is obtained by integrating the product of
the maxwellian particles distribution and �(Ek).
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where I(̄) is:13

I(̄) ⇡ 1.5 exp
⇣
�2.044 ̄

2
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(23)

The Maxwellian has almost no particles at large Ek and the cross-section
is large at large Ek as shown on figure 6. Most of the collisions causing
sharing of Ek and E? comes from the ”Gamow” peak shown on figure
6. For example for ̄ = 20 the Gamow peak is located at 4v̄ that is less
than 2% of the particles participate in such ”rare” collision. The cyclotron
energy is released only by rare collision, analog to fusion reaction where the
energy stored in the nuclei is liberated only by rare energetic collision.

3.2. Correlations

Correlations enhance the perpendicular-to-parallel collision rate through
screening e↵ects, by reducing the amount of parallel energy required by
two ions to come within a distance ⇢. In the absence of shielding the
energy required is:
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in contrast, with Debye screening the parallel energy required is smaller:
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In other words, screening reduces the parallel energy required to come
within a distance ⇢. In the strong coupling regime of � > 1, the e↵ec-
tive shielding distance is the inter-particle spacing, and the energy required
for a collision at distance ⇢ < a

ws

is:
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This shift the cross-section �(Ek) by �Ek = e2/(4⇡✏
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Correlation increases the perpendicular to parallel collision rate by a factor
of roughly g(�) = exp(�). It is worth noting that the enhancement is
independent of �(E), as in the fusion case, where this e↵ect is known as
the Salpeter enhancement.

3.3. Experiments

To test the theoretically predicted correlation enhancement of the collision
rate, we use a magnesium ion plasma contained in a Penning-Malmberg
trap. The plasma density for this experiment is controlled with a rotating
wall (0.12⇥ 107  n  2⇥ 107cm�3), the temperature (2.5⇥ 10�6  T 
1eV) is controlled by laser cooling, the uniform axial magnetic field was
changed in the range of 1.2T  B  3T. The adiabaticity parameter ̄ is
equal to one at a temperature T = 5 ⇥ 10�4eV and B=3T. The coupling
parameter is � = 1 for n = 2⇥ 107cm�3. and T = 6⇥ 10�5eV.

The measured perpendicular-to-parallel collision rate is plotted in figure
7 for two densities n = 2 ⇥ 107 and 0.12 ⇥ 107cm�3 labeled n

7

= 2 and
n
7

= 0.12 In both cases the collision rate is strongly suppressed when ̄ is
larger than unity. The solid lines are theory curves obtained from equa-
tion 22 using numerical values of I(̄) from reference13 with no adjustable
parameters.

Fig. 7. Measured collision rates for two densities versus temperature (lower axis) and
̄ (upper axis) compared to theory with and without correlations. The correlation pa-

rameter � for high and low density is also shown.
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The dashed lines are from equation 27. At lower density the plasma
is never strongly correlated, as shown by � which is also plotted for both
densities. The n = 2 ⇥ 107 cm�3 density labeled n

7

= 2 has � > 1 at
low temperatures, and the measured collisionality is enhanced by several
orders of magnitude over theory neglecting correlations. At low density,
the collision rate is measured down to a rate of 1 sec�1, setting an up-
per limit on extraneous collisional e↵ects. Figure 8 shows the measured
collision rate divided by the theoretical rate neglecting correlations, that
is, the Salpeter enhancement g(�). The enhancement depends on � but
is independent of ̄ , as predicted by theory. The measured correlation
enhancement g(�) is consistent with equilibrium shielding theories, and no
support for alternative dynamic shielding e↵ects is seen.
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Fig. 8. Correlation enhancement g(�) of the collision rate versus the correlation pa-
rameter �.

This work illustrates how laboratory non-neutral plasmas can be used
to study high energy density plasmas where the same enhancement applies
to rare energetic fusion collisions in hot, dense correlated plasmas such as
stars.

Summary of Perpendicular to Parallel Collision Rate

Perpendicular to parallel collision rate are strongly suppressed in the
”strong magnetization” regime of ̄ > 1. Only rare energetic collisions cause
E? to Ek energy exchange. These rare energetic collisions are strongly en-
hanced in the correlated liquid and crystal regime. Enhancement of up to
109 over uncorrelated theory are observed. The same enhancement applies
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to rare energetic fusion collisions in hot, dense, correlated plasmas such as
stars.

4. Tutorial Problem

Devise a technique to measure the perpendicular to parallel collision rate
⌫?k in a magnetized plasma. Hint: look at equation 17 to see which phys-
ical quantities have to be perturbed to measure the collision rate ⌫?k.

A detailed description of two di↵erent techniques is given in reference 12.
The first technique directly observes T? and Tk as they relax to a common
temperature. The parallel temperature is initially increased by small oscil-
lating voltages applied at one end of the plasma. This direct measurement is
practical only for slow rates (⌫?k < 100sec�1) due to photon counting rate
limitations, and is not accurate for low temperatures (T < 10�4eV) since
ion-neutral collisions give a heating rate which dominates the temperature
evolution.

The second technique also uses small oscillating voltages applied at one
end of the plasma. This acts as a piston and alternatively compress and
expand the plasma in the axial direction. If the oscillation frequency f

osc

is
large compared to the collision rate, the cycle is a reversible process since
heat is not transfer to the perpendicular degrees of freedom. Similarly, if
the oscillation frequency is slow compare to the collision rate, the cycle is
also reversible, since heat is fully shared with the perpendicular degrees of
freedom. In contrast if f

osc

⇠ ⌫?k, the process is not reversible: more work
is done during the compression stroke and the excess appears as plasma
heat. The maximum heat per cycle occurs when 2⇡f

osc

C ' ⌫?k where
C is the specific heat at constant density of a magnetized plasma. In the
absence of correlations C = 1/3; and C increases slightly in the presence of
correlations.
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