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Experiments and theory characterize a parametric decay instability between plasma drift waves when

the nonlinear coupling is modified by an electrostatic barrier. Novel mode coupling terms representing

enhanced dissipation and mode phase shifts are caused by chaotic separatrix crossings on the wave-ruffled

separatrix. Experimental determination of these coupling terms is in broad agreement with new chaotic

neoclassical transport analyses.
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Collisional neoclassical transport (NCT) theory [1–7]
provides a baseline estimate for particle transport and
energy dissipation in many applications. In collisional
NCT, particles accumulate drifts from global ‘‘error fields’’
acting over multiple equilibrium bounce orbits, and colli-
sions then make these drifts irreversible. This leads to bulk
particle transport if the error fields are externally main-
tained, and leads to wave damping if the waves themselves
are the error fields. Stronger transport is generally labeled
‘‘anomalous’’, but here we describe ‘‘chaotic’’ enhance-
ments within the NCT framework.

NCT effects are particularly strong if some equilibrium
orbits are bounded by electric or magnetic trapping bar-
riers, creating distinct populations of locally trapped par-
ticles. Then, the velocity distribution function has strong
distortions at the separatrix energy [2,6,7], and small
changes in particle energy due to collisions can have large
transport effects. In toroidal devices, the toroidal curvature
provides an unavoidable error field, and trapping separa-
trices are ubiquitous.

Recent theory and experiments on cylindrical electron
plasmas have characterized a chaotic variant of NCT
[8–12] which is essentially independent of collisionality.
In the simplest form of chaotic NCT, enhanced separatrix
crossings arise from equilibrium plasma rotation along �
variations (ruffles) in the separatrix, giving enhanced trans-
port. The recent experiments [8,12] utilize a cosð�� �BÞ
error field from a controlled magnetic tilt, and an electro-
static barrier with an applied cos½2ð�� �mÞ� ruffle. This
produces a striking sin2ð�B � �mÞ signature for particle
transport and wave damping rates, in broad quantitative
agreement with chaotic NCT theory [9–11]. In toroidal
stellarators, this chaotic form of superbanana transport
[5] appears to be dominant in low-collisionality fusion
regimes [12].

More generally, plasma waves or turbulence may also
cause chaotic NCT, by modifying the separatrix or particle
energies [8,9,12], and this Letter describes a parametric
decay instability where the pump mode ruffles the separa-
trix, causing chaotic NCT dissipation. We consider the

near-resonant decay instability between E� B drift (dio-
cotron) modes: a large amplitude m� ¼ 2, kz ¼ 0 pump
mode decays into an m� ¼ 1, z-antisymmetric daughter
mode, with!2 � 2!1. Analysis of nonlinear fluid convec-
tion gives a conservative mode coupling term [13,14]
which enables parametric decay and energy sloshing
between modes, as commonly observed in nonlinear me-
chanical systems [15]. However, our prior experiments
[16] showed that dissipation at the separatrix changed the
nature of the energy exchange, motivating further experi-
ments and an analysis of chaotic NCT for this process.
Chaotic NCT theory now predicts 3 new terms in the

nonlinear coupling equations, causing (i) enhanced dissi-
pation, (ii) shifts in the relative mode phases during expo-
nential growth, and (iii) frequency shifts in the daughter
mode. The present experiments characterize the first two of
these terms from their effects on the exponential growth
phase of the parametric decay.
The pure electron plasma columns utilized here are

confined in a cylindrical Penning-Malmberg trap, as shown
in Fig. 1. Electrons are confined radially by a uniform axial
magnetic field B ¼ 3 kG ẑ, and confined axially by volt-
ages Vc ¼ �100 V on end cylinders with wall radius
Rw ¼ 3:5 cm. The electron columns have length Lp ¼
36 cm and density profile neðrÞ with central density n0 ¼
2:0� 107 cm�3 decreasing smoothly to zero at 1.5 cm,
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FIG. 1. Schematic of the cylindrical trap and electron plasma,
with voltage �Vsq creating an electrostatic separatrix. Density

perturbations for a TPDM are also shown.
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giving effective radius Rp � ffiffiffi
2

p hr2i1=2 ¼ 1:2 cm. The

unneutralized charge results in an equilibrium potential
energy �eðrÞ, and the resulting E� B drift rotation
fEðrÞ � cEðrÞ=2�rB decreases monotonically from
fE0 ¼ 98 kHz. The electrons have a near-Maxwellian
velocity distribution with (approximate) thermal energy
T � 0:7 eV, giving axial bounce frequency !b �
��v=Lp ¼ 3000=ms and rigidity R � !b=!E0 � 5. The

electron-electron collision rate �ee ¼ 0:5=ms is low com-
pared to !E and !b, so drifts accumulate over many
equilibrium orbits.

A strong electrostatic trapping barrier is created by a
‘‘squeeze’’ voltage Vsq � �13 V applied to the central

3.5 cm cylinder, giving a separatrix barrier energy �eXðrÞ
at z ¼ 0. This barrier nominally traps a fraction�tðrÞ in the
left or right end, while the passing fraction �p ¼ 1� �t of

higher-velocity electrons transit the entire length. Here,
�tð0Þ � 0:2, and �tðRpÞ � 0:95.

The resonant decay instability [16] studied here occurs
between two electrostatic drift (diocotron) modes, with
!2 � 2!1. These modes are easily excited and moni-
tored by wall electrodes, with linear eigenfunctions
�mðr;�;z;tÞ¼Amð�Þexpðim��i!mtÞZðzÞc mðrÞ, and the
received wall signals VwðtÞ accurately determine the (com-
plex) mode amplitudes Amð�Þ, varying on the slow time
scale �. The m ¼ 2 pump mode is a rotating elliptical
distortion of the entire electron column, with nominally
uniform ZðzÞ, having frequency !2 � !E0 and essentially
zero damping. For a ‘‘square’’ nðrÞ profile, the plasma edge
would vary as �Rpð�; tÞ ¼ jA2j cosð2���2 �!2tÞ.

The m ¼ 1 daughter mode is a trapped particle dioco-
tron mode (TPDM) [17,18], which is a z-antisymmetric
variant of the standard z-symmetric m ¼ 1 diocotron
mode, as shown in Fig. 1. The two trapped fractions �t

in either end of the trap execute oppositely phased drift
orbits around the axis with displacement A1, and this
drifting perturbation is partially Debye shielded by the
passing fraction �p. The TPDM frequency is !1 ¼
!E0=2 at V�

sq ¼ �13:V, and a linear damping rate of

�coll
1 � �2:4=ms arises from the collisional separatrix dis-

sipation of the oscillating �p current. Experimentally,

controlling �Vsq � ðVsq � V�
sqÞ controls !1, and we

define the detuning �! ¼ !1 �!2=2 � �ð2�Þ�
ð1:40 kHz=VÞ�Vsq from the measured !1ð�VsqÞ.

Figure 2 shows an example of the parametric decay
when the m ¼ 2 pump wave is excited to amplitude A2 ¼
1:07 mm by a 30-cycle burst applied to the wall sectors.
The m ¼ 1 daughter wave then grows exponentially from
noise as A1 / expð�etÞ, after which the energy sloshes
between modes and decreases slowly. Here, we focus exclu-
sively on the exponential growth phase, obtaining growth
rate �e ¼ 7:2=ms for these parameters. During this
exponential growth, the phase of A1 is ‘‘locked’’ to the
pump A2; that is, the phase difference ��e � �2 � 2�1

is experimentally observed to be constant. Here,
��e � 0:60�, indicating that A1 lags behind A2 by
�1 ¼ 0:30�.
Figures 3–5, characterize this decay instability for a

range of detunings �!, and for a range of pump amplitudes
A2. Figure 3 shows measured growth rates �e versus detun-
ing �! for 4 different pump amplitudes A2. The growth
rate decreases with detuning, as observed in Ref. [16], and
the maximal detuning for which growth is observed
increases with A2. The evolution of Fig. 2 is shown as
bold. The curves are theory for a single ‘‘best-fit’’ set of
coupling parameters, as described below.
Figure 4 shows the maximal growth rate ��

e versus pump
amplitude A2, with the measured collisional damping rate

FIG. 2 (color online). Mode amplitudes A1 and A2 and relative
phase �21 during off-resonant decay of an m ¼ 2 diocotron
mode into the m ¼ 1 TPDM. Exponentiation rate �e and locked
phase �21 are obtained for detuning set by �Vsq.

FIG. 3 (color online). Measured exponentiation rates �e versus
detuning �! calculated from �Vsq, for 4 different pump

amplitudes A2.
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�1 indicated below zero. Each data point in Fig. 4 is
obtained from a �eð�!Þ curve as in Fig. 3. A simplistic
interpretation of this data (as in Ref. [16]) would be mode-
coupling-induced growth at rates 0 ! 25 dominating
damping �coll

1 at rate 2. However, the chaotic NCT inter-
pretation includes ruffle-induced damping at rates 0 ! 11
(short dashed), reducing larger coupling-induced growth at
rates 0 ! 36 (long dashed).

Finally, Fig. 5 shows the measured phase difference
during exponentiation ��e � �2 � 2�1 versus detuning
�!, for the same evolutions as in Fig. 3. In the frame of the
pump mode (�2 ¼ 0), the phase-locked exponentially
growing mode lags behind by �1 ¼ ��e=2, ranging

from 0:4�<�1 < 0� as �! ranges from negative to
positive. The functional dependence of ��eðA2Þ is deter-
mined by the structure of the coupling equations, and the
offset 	 is given by integrals over the wave eigenfunctions.
Of course, the relative phase �� changes substantially
later in the evolution, reflecting the direction of energy
flow.
These measurements of �e and ��e enable direct quan-

titative comparison to the nonlinear coupling coefficients
predicted by chaotic NCT for a ruffled separatrix. The
analysis follows the neoclassical perspective of drift dis-
placements integrated over equilibrium trapped-particle
orbits, but the novel chaotic separatrix crossings on the
wave-ruffled separatrix dominate the collisional scatter-
ings of prior analyses. Prior published theory [9–11] ana-
lyzed bounce-averaged drifts and random separatrix
crossings to characterize the particle transport and TPDM
damping resulting from chaotic NCT. For the present case
of wave couplings, a dynamical bounce-mapping approach
is being prepared for publication [19]. Here, we merely
summarize the resulting form of the coupling equations
and coefficient integrals.
For jA1j � jA2j, the resulting mode-coupling equations

have (all real) coefficients fV0; V1; V2; V3g, as
d

dt
A2 ¼ �!E0

Rw

ðiV0ÞA1A1 expð2it�!Þ (1a)

d

dt
A1 ¼ �!E0

Rw

½ðiV0 � V1ÞA�
1A2 expð�2it�!Þ

þ ðV2 þ iV3ÞA1jA2j� � ~�1A1: (1b)

The theory scales with !E0 and Rw, and we define the

dimensionless pump amplitude Â2 � A2=Rw. The damping

term ~�1 ¼ �coll
1 expð�!E0V2Â2=�

coll
1 Þ is an approximate

form representing collisional separatrix mode damping
�coll
1 being suppressed exponentially by the ruffle, to be

replaced by chaotic damping as V2Â2 becomes significant.
The coefficients Vj depend on integrals over ne, �e, c 1,

c 2, and derivatives; the integrals are denoted by hFin �RRw

0 Fn0edr=
RRw

0 n0edr. The interactions take place in a rotat-
ing frame denoted by tilde, as ~� � �� ð!2=2ÞðeB=2cÞr2
and ~!E ¼ !E �!2=2. We obtain

V0 ¼ GhðN0T= ~�0
eÞc 2c

2
1=neE ~!Ein;

V1 ¼ GhgN jc 2c
2
1j=neE ~!Ein;

V2 ¼ GhjgjN jc 2c
2
1j=neE ~!Ein;

V3 ¼ ð�=4ÞV2:

(2)

Notationally, the normalization factor is G ¼
!E0RwRp=2


2
D. The density profiles NðrÞ�neð�p�E�tÞ

and N ðrÞ � 4nee
�yð1þ EÞ= ffiffiffiffiffiffiffiffiffi

�3y
p

are modified by

FIG. 5 (color online). Measured relative phase angle �e dur-
ing exponentiation for the evolutions of Fig. 3, determining
	 ¼ atanðV1=V0Þ.

FIG. 4. Measured maximum growth rate ��
e at �! ¼ 0, versus

pump amplitude A2. Coupling strength WA2 drives growth,
countered by collisional damping �coll

1 and ruffle-induced cha-

otic damping V2A2.
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separatrix height y � �eX=T, with EðrÞ � n0eT=ne ~’0
e

representing the ratio of diamagnetic and drift terms.

The factor gðrÞ � ~�2X= ~�2 � ~�0
eX= ~�

0
e characterizes the

separatrix ruffle relative to the uniform regions. The
radial eigenfunctions are assumed to be normalized
so that hðc 1!E0= ~!EÞ2�tin¼1, hðc 2!E0= ~!EÞ2in¼1, and
hc min > 0.

In simplest form, this theory describes the effects of a
z-localized separatrix on an otherwise z-uniform equilib-
rium neðrÞ, and radial potential profiles such as �2, �2X,
and c m are obtained from separate radial integrals. This
gives the 1D coefficients of Table I. Alternately, we nu-
merically calculate the (r, z) Boltzmann-Poisson equilibria
neðr; zÞ and eigenfunctions c mðr; zÞ. This gives the 2D
coefficients of Table I.

The exponentially growing solution of Eq. (1b) can be
most simply expressed in terms of composite coupling,
damping, and detuning parameters, defined by

W expði	Þ � V0 þ iV1; D � ~�1=!E0 þ V2Â2;

� � �!=!E0 þ V3Â2:
(3)

The growth rate �e and relative mode phases ��e are then
given by

�e=!E0 ¼ �DþWÂ2 cos�;

� � sin�1ð�=WÂ2Þ;
��e ¼ �=2� 	þ �:

(4)

The curves on Figs. 3–5, represent Eqs. (3) and (4) with
the single set of 4 parameters listed in Table I as Expt. fit,
using the separately measured �coll

1 . These 4 parameters are
a least-squares fit to a data set about twice as large as
shown in Figs. 3–5, all showing similar correspondence
to theory.

The two coefficients fV0; V1g determine the composite
coupling strength W and the ‘‘zero-detuning’’ phase shift
��e ¼ �=2� 	. The coefficient V2 alone represents
ruffle-induced damping. The coefficient V3 predicts a
ruffle-induced frequency shift not identified in these
experiments, apparently due to nonlinear and apparatus-
dependent shifts not included in theory. For comparison, a
‘‘simplistic’’ decay model with A2-independent damping
rate �coll

1 and real coupling coefficientW ¼ V0 would have

a linear ��
E starting from �coll

1 in Fig. 4, and would have

zero phase offset 	 in Fig. 5.

The chaotic NCT damping VÂ2 is dominant in the dis-
sipation represented byD. Prior neutral plasma NCTanaly-
ses [5] have noted that a ruffle on a separatrix can decrease
the collisional NCT; but these analyses have not yet incor-
porated chaotic NCT transport and dissipation. Here, this
small decrease in collisional dissipation is far outweighed
by the additional ruffle-induced chaotic dissipation. On

Fig. 4, the (long dashed) line labeled WÂ2 would be the
observed growth ratewithout collisional damping andwith-

out the ruffle-induced dissipation represented by V2Â2

(short dashed line). Careful phasing of the global field error
(wave 1) with the separatrix ruffle (wave 2) could produce a
striking sin2ð�1 � �2Þ suppression of chaotic dissipation;
but nature chooses the opposite phasing here.

We note also that the phase-independent V2Â2 contribu-
tion to the damping D of Eq. (4) agrees quantitatively with
the ruffle-induced damping observed with a static or non-
resonant m ¼ 2 potential [9,10]. The coefficients V1 and
V2 are closely related to integrals over the phase-dependent

and phase-independent NCT diffusion coefficients D̂1 and

D̂0 of Eq. (57) in Ref. [10], there obtained for a static ruffle.
Also, we note that energy conservation requires that V2 >
jV1j; this is marginally satisfied in the two theory calcu-
lations, and somewhat exceeded in the experimental fit. A
phase-averaged ruffle always produces increased transport,
corresponding to positivity of diffusion in the transport
analysis.
For zero detuning, the phase angle ���

e ¼ �=2� 	 of
Fig. 5 and Eq. (4) determines the relative magnitudes of V0

and V1, as tan	 ¼ V1=V0. The exponentiation analysis of

Eq. (4) is only valid for �WÂ2 < �!=!E0 <WÂ2, with
the detuning angle � varying over ��=2<�<�=2, and
we observe the 70% of this range for which �e > 0. We
note that these absolute phase differences between signals
at different frequencies in (filtered) amplifier chains are
subject to several experimental errors, so we give an
uncertainty of �:05� for 	.
The present experiments do not provide an unambig-

uous measurement of the theory coefficient V3, because
of frequency shifts not included in theory. Both drift
waves show nonlinear frequency shifts at these ampli-
tudes, with or without separatrix couplings, complicating
the correspondence with the �! of theory. However, the
simple Vsq-defined �! in Figs. 3 and 5 is apparently an

adequate determinant of the detuning parameter � in
Eqs. (3) and (4).
Other experimental uncertainties are in the (radially

nonuniform) temperature 0:5< TðrÞ< 1:0 eV, the magni-
tude of !E0ð�10%Þ, and the calibration of A2 (� 10%).
We note that the ratio V2=W is independent of the !E0 and
A2 calibrations; however, this still varies with T and with
the details of the separatrix potentials, as suggested by the
difference between the 1D and 2D calculations.

TABLE I. Exponential growth parameters from a single fit to
all experimental data; and from theory Eq. (2), 1-dimension only
and with R-Z potential corrections.

W 	 V2=W V3=W

Expt. fit 1.06 0:14� 0.30 � 0:04?

1D theory .94 0:043� 0.20 0.16

2D theory .94 0:10� 0.32 0.25
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In summary, the parametric decay of drift (diocotron)
waves in low-collisionality plasmas is shown to be in close
agreement with predictions of chaotic neoclassical trans-
port. Specifically, the chaotic NCT causes strongly
enhanced dissipation, and determines the phase-locked
mode phases during exponential growth. Similar chaotic
NCT may arise from plasma rotation, waves, or turbulence
in both cylindrical and toroidal plasma devices.
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